
Reminiscences

Ken-iti Sato (Nagoya)

I was born in June 1934 in Tokyo, and studied mathematics in University of

Tokyo. My adviser was Kôsaku Yosida. The first mathematical paper was in 1961.

The directions of my works since then were as follows:

(i) Boundary problems of Markov processes, 1962–1971, Tokyo.

(ii) Operator semigroups and Banach lattices, 1967–1972, Tokyo.

(iii) Infinitely divisible distributions, Lévy processes, additive processes, Ornstein-

Uhlenbeck type processes, and writing of the CUP book, 1973–1999, Tokyo,

Kanazawa, Nagoya.

(iv) Population-genetic models, 1975–1980. Tokyo, Kanazawa.

(v) Further on infinitely divisible distributions and Lévy processes, 2000–2019,

Nagoya.

In 1994, I made a recollection talk1 at the age of sixty. Completion of the CUP

book mentioned in (iii) was later. Today I would like to talk mainly about the book,

that is, Lévy Processes and Infinitely Divisible Distributions published by Cambridge

University Press in 1999. It is the most widely known among my mathematical con-

tributions. In fact, according to MathSciNet, the book has 1882 citations (including

those of the revised edition of 2013) as of October 19. According to Google Scholar,

it has 5733 citations. They are scattered in many areas of science. Lévy processes are

very popular in these two decades in the areas using probability theory; J. Bertoin’s

book2 also has lots of citations. As I mentioned only shortly in the preface why I

wrote the book, I would talk here about my motivation behind the book.

The oldest and most important object of study in probability theory is partial

sums of independent identically distributed random variables Sn = Z1 + · · · + Zn,

n = 1, 2, . . ., which we call a random walk. The next most important object would

be Brownian motion, or Wiener’s measure on the space of continuous functions. I

This article is an extension of a talk given on November 8, 2019.
1The English translation is Banach lattices, potential operators, population-genetic models, L dis-

tributions, and Lévy processes in my home page http://ksato.jp/ (Selected Miscellaneous Writings).
2Lévy Processes, Cambridge University Press, 1996.
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agree with D.W. Stroock saying in his book3, “Wiener’s measure is quite possibly the

single most important object in all of modern probability theory”. Then what is the

third most important object in probability theory? In my opinion, it is the class of

Lévy processes. A Lévy process is defined to be a stochastic process {Xt : t ≥ 0} on

the Euclidean space Rd which is with stationary independent increments, starting at

the point 0, continuous in probability, and satisfying the cadlag condition (i.e. almost

surely each path Xt(ω) is right-continuous with left limits in t). If we do not require

the cadlag condition, then we call {Xt : t ≥ 0} Lévy process in law. However, any

Lévy process in law has a modification4 which is a Lévy process. Hence, sometimes

we use the word Lévy process in the meaning of Lévy process in law.

Let µ1 ∗ µ2 denote the convolution of two distributions µ1, µ2 on Rd. For a

distribution µ and a positive integer n let µn∗ denote µ ∗ · · · ∗ µ (n factors). A

distribution µ is called infinitely divisible if for each n there is a distribution µn such

that µ = µn
n∗. Let µ̂(z), z ∈ Rd, be the characteristic function µ̂(z) =

∫
Rd e

i⟨z,x⟩µ(dx).

Then µ is infinitely divisible if and only if for each n there is a distribution µn such

that µ̂(z) = µ̂n(z)
n.

The class of Lévy processes {Xt : t ≥ 0} on Rd corresponds with the class of

infinitely divisible distributions µ on Rd one-to-one5 and onto. The correspondence

is described by µ = L(X1), the distribution (or law) of X1.

The characteristic function of an infinitely divisible distribution µ on Rd is de-

scribed by a unique triplet (A, ν, γ) of a d× d symmetric nonnegative-definite matrix

A, a measure ν on Rd satisfying ν({0}) = 0 and
∫
Rd min{|x|2, 1}ν(dx) < ∞, and

γ ∈ Rd in the form

µ̂(z) = exp

[
−1

2
⟨z, Az⟩+ i⟨γ, z⟩+

∫
Rd

(
ei⟨z,x⟩ − 1− i⟨z, x⟩1{|x|≤1}(x)

)
ν(dx)

]
,

where 1{|x|≤1}(x) = 1 or 0 according as |x| ≤ 1 or |x| > 1. Conversely, for any triplet

(A, ν, γ), there exists a unique infinitely divisible distribution µ whose characteristic

function is described by (A, ν, γ). This description of µ̂(z) is called Lévy–Khintchine

representation of an infinitely divisible distribution µ. Here A, ν, and γ are respec-

tively called Gaussian covariance, Lévy measure, and location parameter of µ.

3Probability Theory, an Analytic View, Cambridge University Press, 1993; see page xi.
4{X ′

t : t ≥ 0} is called a modification of {Xt : t ≥ 0} if P [X ′
t = Xt] = 1 for every t.

5Here we identify two Lévy processes if they have a common system of finite-dimensional
distributions.
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If {Xt : t ≥ 0} is a Lévy process corresponding to µ, then µt = L(Xt) is infinitely

divisible and the triplet of µt is (tA, tν, tγ). The word Lévy–Khintchine representation

of µ is also used as of {Xt}.
The Lévy–Khintchine representation is proved in the knowledge of the second

course analysis. The class of Lévy processes is thus an easily describable class. Brow-

nian motion on Rd is a Lévy process with triplet (I, 0, 0), where I is the d×d identity

matrix. Poisson process is a Lévy process on R with triplet (0, δ1, 1), where δ1 is

the distribution6 concentrated at 1. In spite of the simplicity of the definition, the

class of Lévy processes is surprisingly rich. A lot of diverse processes with compli-

cated jumps are included in the class by the freedom of choice of Lévy measure. For

example, the jumps of the path of a Lévy process {Xt} on R with ν((−∞, 0)) = 0

and
∫
(0,1]

xν(dx) = ∞ are countable and satisfy Xt − Xt− > 0 but, for any t1 < t2,∑
t1<t≤t2

(Xt −Xt−) = ∞ and P [Xt < 0 ] > 0 for all t > 0 as if there is drift of size

−∞. The class of Lévy processes has inexhaustible features connected with jumps of

random motion, by which I am tempted to call it the third most important object in

probability theory. It is like Brownian motion has inexhaustible features connected

with continuous random motion.

Researches up to 1990s accumulated many results on properties of Lévy processes

and infinitely divisible distributions. So I had the following two points in the purposes

of the book.

Point I. Give an introduction to the theory of Lévy processes with minimum

prerequisite knowledge. Furnish all theorems with detailed proofs.

Point II. Based on the correspondence of Lévy processes and infinitely divisible

distributions, develop theories of the two objects simultaneously.

For Point I, I did not assume the sophisticated theory of stochastic processes

(such as martingales) with continuous parameter. I assumed the knowledge roughly

equivalent to W.Feller’s book7, measure theory, and several results in the cited books

in probability or analysis. For instance the correspondence of Lévy processes and

infinitely divisible distributions is based on Kolmogorov’s extension theorem. I aimed

at writing a readable book (or, at least, a book such that a fair amount of its contents

are readable), as there was no such book for Lévy processes.

I had to make a big exception for Point II. That is decomposition theory of

infinitely divisible distributions developed by Cramér, Linnik, Ostrovskii, Cuppens,

6A distribution concentrated at a point c is denoted by δc and called a trivial distribution.
7An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed., Wiley, 1968.
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R. Shimizu and others; we do not know any connection of this theory with Lévy

processes.

Further I had many more points in my purposes. Let me describe them in Points

III to X.

Following Paul Lévy, we call a stochastic process {Xt : t ≥ 0} an additive process

if it is with (not necessarily stationary) independent increments, starting at 0, con-

tinuous in probability, and satisfying the cadlag condition. If we do not require the

cadlag condition, we call it an additive process in law. But, similarly to the case of

Lévy process, we sometimes use the word additive process in the meaning of additive

process in law. A result of Lévy and Khintchine shows that µs,t = L(Xt − Xs) is

infinitely divisible for 0 ≤ s ≤ t if {Xt} is an additive process in law and that the

class of additive processes in law corresponds one-to-one onto the class of families

{µs,t : 0 ≤ s ≤ t < ∞} of infinitely divisible distributions satisfying8 µs,t ∗ µt,u = µs,u,

µs,s = δ0, µs,t → δ0 as s ↑ t, and µs,t → δ0 as t ↓ s. Hence the theory of additive pro-

cesses is entirely within the theory of infinitely divisible distributions. Let (At, νt, γt)

be the triplet of L(Xt). If {Xt} is a Lévy process, then (A1, ν1, γ1) = (A, ν, γ) and

(At, νt, γt) = (tA, tν, tγ). I had the following point.

Point III. Develop the basic part of the theory of an additive process {Xt}.
This includes the Lévy–Itô decomposition of paths of {Xt}. Here (independently

scattered) Poisson random measure on H = (0,∞)×(Rd\{0}) with intensity measure

ν̃ defined by ν̃((0, t] × B) = νt(B) for any Borel set B is introduced; each jump

(s,Xs(ω) − Xs−(ω)) is considered as a point in H; this clarifies the probabilistic

meaning of νt.

In fact, in Chapter 4, I gave a new simpler proof of the Lévy–Itô decomposition,

based on the idea that it is enough to construct the additive process satisfying the

asserted decomposition, starting from the triplet (At, νt, γt) of {Xt}.
A distribution µ on Rd is called stable if, for any positive integer n, there are

an > 0 and cn ∈ Rd satisfying µ̂(z)n = µ̂(anz)e
i⟨cn,z⟩; µ is called strictly stable if it is

stable with cn = 0. If µ is stable, then it is infinitely divisible. A Lévy process {Xt}
with L(X1) being stable or strictly stable is called a stable or strictly stable process,

respectively. They were studied in the first stage of the development of the theory

in 1920s. A distribution µ on Rd is called selfdecomposable if, for any b > 1, there

is a distribution ρb satisfying µ̂(z) = µ̂(b−1z)ρ̂b(z). If µ is selfdecomposable, then

8Convergence of a sequence of distributions µn to a distribution µ, denoted by µn → µ, means
that

∫
f(x)µn(dx) tends to

∫
f(x)µ(dx) for all bounded continuous functions f .
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ρb is uniquely determined by b and µ and ρb are infinitely divisible. Selfdecompos-

able distributions were discovered by Lévy in 1936 in answer to a problem posed by

Khintchine, who called them distributions of the class L ; the name selfdecomposable

is due to Loève. A Lévy process {Xt} with L(X1) being selfdecomposable is called a

selfdecomposable process.

Point IV. Give an introduction to the theory of stable and selfdecomposable

processes, including processes called semi-stable and semi-selfdecomposable.

Stable distributions and processes are treated in several books, but comprehensive

treatment of selfdecomposable distributions and proceeses was not found earlier. A

stochastic process {Yt : t ≥ 0} is called selfsimilar if, for every a > 0, there is b > 0

such that9 {Yat : t ≥ 0} d
= {bYt : t ≥ 0}. A stochastic process is a selfsimilar Lévy

process if and only if it is a strictly stable process. Any non-trivial10 stable process

{Xt : t ≥ 0} has a unique index α ∈ (0, 2] such that, for any b > 0, {Xbt : t ≥ 0} d
=

{b1/αXt + cb(t) : t ≥ 0} with a non-random function cb(t).

Three characterizations of selfdecomposability had been known; first as the limit

distribution of summation (in some way) of a sequence of independent (not al-

ways identically distributed) random variables, second by its Lévy measure ν(B) =∫
S
λ(dξ)

∫∞
0

1B(rξ)kξ(r)r
−1dr, where S is the unit sphere {|ξ| = 1}, λ is a finite mea-

sure on S, and kξ(r) ≥ 0 is decreasing in r and measurable in ξ, and third as the

limit of an Ornstein–Uhlenbeck type process11 convergent in distribution12 as t → ∞.

I found, in [1990b S] and [1991 S], the fourth characterization as the distribution at a

fixed time of a selfsimilar additive process. This characterization drew attention of

people in mathematical finance; they named selfsimilar additive process as Sato pro-

cess. In the development of my interest in selfsimilarity M.Maejima was influential.

Let me recall M.Yamazato’s result13 that all selfdecomposable distributions on

R are unimodal. It was an ingenious solution of the long-standing problem. I was

stimulated very much by this work of his, which was done in 1976. In 1965 I moved

9We write {Xt : t ≥ 0} d
= {Yt : t ≥ 0} if the two processes have an identical system of finite-

dimensional distributions.
10A Lévy process is called trivial if, for each t, L(Xt) is trivial.
11A process {Yt : t ≥ 0} is called an Ornstein–Uhlenbeck type process if Yt = J + Zt − c

∫ t

0
Ysds,

where {Zt} is a Lévy process, c > 0, and J is a random variable independent of {Zt}. Sometimes it
is called an Ornstein–Uhlenbeck process driven by a Lévy process {Zt}.

12The process {Yt} is convergent in distribution as t → ∞ if and only if the Lévy measure νZ of
{Zt} satisfies

∫
|x|>1

log |x| νZ(dx) < ∞.
13Unimodality of infinitely divisible distribution functions of class L. Ann. Probab., 6 (1978),

523–531.
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from Tokyo Metropolitan University to a newly created department of Tokyo Uni-

versity of Education (I think a better translation of the name is Tokyo Pedagogical

University). It was essentially a second department of mathematics of that univer-

sity. Four professors in probability gathered there: G.Maruyama and M.Motoo as

full professors and M.Fukushima and I as associate professors. A. Shimizu was one of

assistants. Yamazato came in as a graduate student and studied with me branching

processes and infinitely divisible distributions. The progress made by Yamazato and

later by T.Watanabe14 encouraged me to work further. Selfdecomposable distribu-

tions were objects of research of Yamazato and me for several years: a detailed study

of the shape of their density on R in [1978 S–Yz] and [1981 S–Yz], and then a study

of their relation to Ornstein–Uhlenbeck type processes on Rd in [1984 S–Yz]. I tried

for some years to show that all non-degenerate selfdecomposable distributions on Rd,

d ≥ 2, are absolutely continuous15 (their Lévy measures may be continuous singular);

I succeeded in its proof in [1982 S] by a new method. What is an extension to Rd,

d ≥ 2, of the unimodality of selfdecomposable distributions on R ? We do not know

an adequate definition of unimodality for d ≥ 2 yet.

Point V. Indicate time evolution of distributional properties of a Lévy process in

qualitative nature. (Dependence of µt on t in Chapters 5 and 10)

The distribution µt = L(Xt) of a Lévy process {Xt} is linear with respect to t

in some sense, because log µ̂t(z) is linear with respect to t. However, a general Lévy

process can have time evolution in the qualitative properties of µt. This had not been

well-known, probably because stable processes, being thought as typical examples of

Lévy processes, do not have time evolution in the qualitative distributional properties.

Nevertheless, a pioneering work of H.Rubin16 gave an idea to show a remarkable result

in this direction, that is, given an arbitrary increasing function f(t) from [0,∞) to

[0, 1]∪{∞}, one can find a Lévy processes on R such that f(t) equals the infimum of

the Hausdorff dimensions of all Borel sets B with µt(B) = 1 if µt is singular and equals

∞ if µt is absolutely continuous. In [1994 S] I pointed out the existence of a Lévy

process on R such that µt is continuous singular for t < 1 and absolutely continuous

for t ≥ 1; by a slight change of construction, µ1 becomes continuous singular. This

14He is Toshiro Watanabe. There are other probabilists with name T.Watanabe.
15The words “absolutely continuous” and “singular” are with respect to Lebesgue measure unless

otherwise noted.
16 Supports of convolutions of identical distributions, Proc. Fifth Berkeley Symp. Math. Stat.

Probab. Vol. 2, Part 1 (1967), 415–422.
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was an extension of a paper17 of H.G.Tucker, who followed Rubin’s method. It looks

like a phase transition.

The distribution µt(dx) = (ct/Γ(t))xt−1e−cx1(0,∞)(x)dx on R with t > 0 and c > 0

is called Γ-distribution with shape parameter t and scale parameter c ; µ1 is called

exponential distribution with parameter c. Then µt is infinitely divisible and the

Lévy process {Xt} corresponding to µ1 satisfies L(Xt) = µt ; hence {Xt} is called

Γ-process. This µt is unimodal with mode being 0 for t ≤ 1 and (t − 1)/c for t > 1.

Here we see a mild time evolution (from mode 0 to positive mode). I was interested in

the existence of a Lévy process on R in which time evolution in modality (unimodal

to multimodal, or reverse, or repetition of such changes) is observed, and wrote a

paper [1995 S] on this subject.

Concerning the time evolutions for d = 1 of both types (one is from continuous

singular to absolutely continuous and the other is in modality) T.Watanabe solved

many problems in 1994–2000 and our knowledge made a big progress.

Point VI. Subordination and density transformation of Lévy processes on Rd.

They are two important transformations from Lévy processes to Lévy processes.

Transformation called subordination is time change of a Lévy process {Xt} on

Rd to a Lévy process {Yt} on Rd in the form Yt = XZt by an increasing Lévy process

{Zt} independent of {Xt}. It was studied and named by S.Bochner in 1949. Thus

an increasing Lévy process is called subordinator. A Lévy process {Zt} with Lévy

measure νZ is a subordinator if and only if νZ((−∞, 0)) = 0,
∫
(0,1]

x νZ(dx) < ∞, and

µ̂Z(z) = exp
[
iβz +

∫∞
0
(eizx − 1)νZ(dx)

]
with β ≥ 0, where µZ = L(Z1). In a section

of Chapter 6, I made a concise introduction to subordination; this part is frequently

referred to.

Let D be the space of mappings ω(t) from [0,∞) into Rd right-continuous with

left limits. Write xt(ω) = ω(t). Let Ft or FD, respectively, be the smallest σ-algebra

that makes {xs : s ∈ [0, t]} or {xs : s ≥ 0} measurable. Then any Lévy process is

realized by some probability measure P on FD as {xt : t ≥ 0}. The restriction of P

to Ft is denoted by [P ]Ft . The class of Lévy processes on Rd thus corresponds with

a class of P on FD. Let P and P ♯ be two probability measures in this class. Then

P ♯ ⊥ P (i.e. P ♯ is singular with respect to P ) if P ♯ ̸= P . If [P ♯]Ft ≪ [P ]Ft (i.e. [P
♯]Ft

is absolutely continuous with respect to [P ]Ft) holds for some t > 0, then it holds

for all t > 0. If [P ♯]Ft ⊥ [P ]Ft holds for some t > 0, then it holds for all t > 0. Let

17On a necessary and sufficient condition that an infinitely divisible distribution be absolutely
continuous. Trans. Amer. Math. Soc. 118 (1965), 316–330.
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[P ♯]Ft ≈ [P ]Ft denote mutual absolute continuity of [P ♯]Ft and [P ]Ft . Then, using

the Hellinger–Kakutani distance between the Lévy measures of P and P ♯, we can

give a necessary and sufficient condition for [P ♯]Ft ≈ [P ]Ft in terms of their triplets;

the Radon–Nikodým derivative d[P ♯]Ft/d[P ]Ft is expressed as the exponential of a

Lévy process on R. Thus, starting from Lévy process P , we can construct all Lévy

processes P ♯ such that [P ♯]Ft ≈ [P ]Ft . This is called density transformation. Esscher

transformation is a simple example, where we have, with some η ∈ Rd and c ∈ R,
P ♯(B) = e−ct

∫
B
e⟨η,xt(ω)⟩P (dω) for B ∈ Ft. Further, we can extend the theory to the

Lebesgue decomposition of [P ♯]Ft with respect to [P ]Ft , starting from any P and P ♯.

See Section 60 of the revised edition of the book and my lecture notes18.

Point VII. Introduction to recurrence-transience criteria for Lévy processes and

related behaviors as t → ∞.

A Lévy process {Xt} on Rd is called recurrent if lim inft→∞ |Xt| = 0 a.s.; it

is called transient if |Xt| → ∞ as t → ∞, a.s. Any {Xt} is either recurrent or

transient. If d ≥ 3, then any genuinely d-dimensional Lévy process is transient.

Hence the criterion problem of recurrence-transience is for d = 1, 2. Two criteria

are known: (1) the potential measure of order 0, finite on any compact set, defined

by V (·) =
∫∞
0

µt(·)dt, does not exist or exists; (2) the function Re (−1/ log µ̂(z))

is non-integrable or integrable on a bounded neighborhood of 0. The latter is by

K.L.Chung–W.H.Fuchs, F. Spitzer, and S.C. Port–C.J. Stone. However, no criterion

is known in terms of the triplet (A, ν, γ). Only in symmetric 1-dimensional case,

Shepp’s criterion is known. In 1-dimensional transient case, there are three cases:

Xt → ∞ a.s., or Xt → −∞ a.s., or the set of limit points is {−∞,∞} (oscillating

case); a criterion is known in terms of Lévy measure (H.Kesten, K.B. Erickson). I

intended to make comprehensive treatment with examples in Chapter 7, but some

results were without proof.

Point VIII. Introduction to potential theory for Lévy processes on Rd.

This is treated in Chapter 8. The essential idea is the strong Markov property.

The basic concepts and results were developed in G.A.Hunt’s papers in 1957 and 58

for a class of temporally homogeneous Markov processes later formulated in the book

by R.M.Blumenthal and R.K.Getoor19 as standard processes or (more strongly) Hunt

processes. We had to discuss Conditions (ACT) and (ACP), absolute continuity of

18Density Transformation in Lévy Processes (2000) Lecture Notes, No. 7, MaPhySto, Centre for
Math. Physics and Stochastics, Univ. Aarhus. You can download it from the site of MaPhySto.

19Markov Processes and Potential Theory, Academic Press, 1968.
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transition measures and potential measures, respectively. Lévy processes are Hunt

processes, but the capacity theory of Hunt applies only under Condition (ACP). The

capacity theory for general Lévy processes was established by the Port–Stone papers

in 1971. In order to fully discuss the materials, I need sophisticated prerequisite.

Instead I chose to give only main results with proofs. Thus, it was only for Fσ-sets

B that the hitting time TB = inf{t > 0: Xt ∈ B} of B was shown to be a stopping

time, q-capacitary measure of B and q-capacity Cq(B) for q > 0 were defined, and

its relation with q-energy eq(B) was analyzed. We have Cq(B) = 0 if and only if

B is essentially polar. Applications to stable processes by S.Orey and M.Kanda

were given. Although I did not use the fine topology induced by a Lévy process, the

classification of Lévy processes related to hitting times and regularity of a point by

Kesten in 1969 was given. Writing of this chapter was not easy.

Point IX. Introduction to Wiener–Hopf factorizations for Lévy processes on R.
Let {Xt} be a Lévy process on R and let V q(B) = E

[∫∞
0

e−qt 1B(Xt) dt
]
for

q > 0. Then qV q is infinitely divisible and its characteristic function q(q− log µ̂(z))−1

is written as φ+
q (z)φ

−
q (z), the product of the two characteristic functions φ+

q (z) and

φ−
q (z) of some infinitely divisible distributions on [0,∞) and (−∞, 0], respectively.

Decompositions having a resemblance to this are called Wiener–Hopf factorizations

for the distributions of the processes Mt = sups≤t Xs, Yt = Mt−Xt, Rt = T(t,∞), those

of the dual process {−Xt} of {Xt}, and so forth. They are used in the analysis of

short-time or long-time behaviors of {Xt}. Although an elegant treatment is known

as in Bertoin’s book, I took a road beginning with compound Poisson processes and

approximating a general Lévy process by them. This road is close to the histori-

cal development and we can look at the connection with Wiener–Hopf technique in

complex analysis.

Point X. Give as many explicit examples as possible.

Development up to 1990s supplied lots of new examples of infinitely divisible dis-

tributions: Student’s t, Fisher’s F , Gumbel, Weibull (with 0 < α ≤ 1), Pareto,

log-normal, logistic, half-Cauchy, generalized inverse Gaussian, hyperbolic, log of

Γ-variable (E 18.19 of the book), hyperbolic-cosine (Lévy’s stochastic area), distri-

butions involving Bessel functions, and so on. Also new subclasses of the class

of infinitely divisible distributions were introduced, such as GGC (genaralized Γ-

convolutions), gcmed (generalized convolutions of mixtures of exponential distribu-

tions), Lm, L∞ (subclasses of the class L), and so on. In one dimension, see the
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book20 by F.W. Steutel and K. van Harn. Those examples show the richness of the

theory of Lévy processes and infinitely divisible distributions.

I worked in University of Minnesota two academic years 1967/68 and 1975/76 as

a visiting member; there were many probabilists, S.Orey, W.E. Pruitt, B.E. Fristedt,

N. Jain, R.H.Cameron, G.Kallianpur, R.V.Chacon, among them. I worked also in

University of Illinois one academic year 1968/69; there were J.L.Doob, F.Knight,

D.L. Burkholder, W.Philipp. From seminars in Minnesota and Illinois and from per-

sonal contact I learned very much. Usually my work was half research and half

teaching, but sometimes full teaching. In the year 1975/76 I had lectures on stochas-

tic processes of one year for graduate course every Mon., Wed., Fri. and, in winter

and spring quarters, on calculus for undergraduate students in addition, four times

a week. Similar lectures on stochastic processes for graduate course do not exist in

Japan; I enjoyed preparation of them.

My contact with Doob began 1968 in Illinois. Every Tuesday after a probability

seminar people went together to a pizza house for lunch. Doob always seemed enjoying

talking and discussing. In one of such occasions, he suggested me to write a book

on Markov processes on boundary in the series “Ergebnisse der Mathmatik und ihrer

Grenzgebiete” of Springer-Verlag. He was one of the editors of the series. Two months

after I accepted his suggestion. Then I was asked by him whether I would make a

contract with Springer to write the book. I chose not to make a contract. In fact

Doob advised me to make a contract, saying that when he intended to write a book

Stochastic Processes for John Wiley, he signed the contract because his wife Elsie

advised him to have the obligation. Then I began preparation for a comprehensive

book. But the book was not realized, as the work was much harder than I thought

and my interest shifted in several years. However, the planning of such a book had

a good effect to me in the 1970s; I began thorough study of the books including

Blumenthal–Getoor, Feller’s Volume 2, and Spitzer21 to have a solid basic knowledge.

I moved from Tokyo Univ. of Educ. to Kanazawa Univ. in 1976. People say

that Tokyo Univ. of Educ. moved 70 kilometers and had a new name Tsukuba Univ.

But this is incorrect. At first the relocation of the university was proposed about

1967 but there was strong opposition by professors and students. The university

got into turmoil and, in 1969, even the entrance examination was canceled. The

20Infinite Divisibility of Probability Distributions on the Real Line, Marcel Dekker, 2004.
21Principles of Random Walk, Van Nostrand, 1964.
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struggle ended with the closedown of Tokyo Univ. of Educ. and the creation of a

new university called Tsukuba with new professors added. Many faculty members

who opposed the relocation chose not to join Tsukuba Univ. They include the four

professors in probability that I mentioned. After seven years at Kanazawa Univ.,

I moved to College of General Education, Nagoya Univ. in 1983. About ten years

later, organizational changes were made in almost all national universities in Japan

and I belonged to Faculty of Informatics. I resigned from Nagoya Univ. in 1996, two

years before the retirement age, and started working freely at my home, using library

facility at the university. Actually I am a professor emeritus, but in Japan it is almost

nominal.

The book from Cambridge was published under the contract on translation right

between Kinokuniya Publishers and Cambridge Univ. Press. I wrote the original

book in Japanese published in 1990 with title Kahou Katei, whose direct translation

is additive process. I used the word in the meaning of Lévy process of today. So,

I translated my book and simultaneously made a complete revision; the title was

changed to Lévy Processes and Infinitely Divisible Distributions and, roughly speak-

ing, the contents were doubled; in fact, all treatment of additive processes was new,

semi-stability and semi-selfdecomposability were new, the notion of time evolution of

qualitative distributional properties of a Lévy process was new, density transforma-

tion was new, Shepp’s criterion of recurrence-transience in symmetric case was new,

the chapter on potential theory for Lévy processes was entirely new, all exercises

were newly inserted, and so on. This work started in 1993 and done mostly after my

resignation from Nagoya University. Points I to X were of the book from Cambridge;

they became gradually clear while I was making the complete revision.

During and after writing the book, I visited Zurich (Switzerland), Aarhus (Den-

mark), Guanajuato (Mexico), and other places for lectures and meetings. I made joint

works with O.E.Barndorff-Nielsen, A. Lindner, M.Maejima, J. Pedersen, V. Pérez-

Abreu, Y.Ueda, T.Watanabe, and K.Yamamuro. A.Rocha-Arteaga and I wrote a

slim book Topics in Infinitely Divisible Distributions and Lévy Processes, which was

published by Sociedad Matemática Mexicana in 2003. But, from January 2005 on,

I could not go abroad for reasons of health. At home I made revision of the book

from Cambridge. Revised edition with xiv+521 pages was published in 2013 in pa-

perback; the original edition was preserved except some corrections and 30 pages of
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Supplement and new references were added. Recently Rocha-Arteaga and I made a

thorough revision of our book and Revised edition was published by Springer in 2019.

Let me add two things here. One is about early years while I was working in

Tokyo and another is about some symposiums from 1969.

In the latter half of 1960s Maruyama and the probability group in the second

mathematics department of Tokyo Univ. of Educ. acted as the center of Japanese

mathematicians’ movement against USA in the Vietnam War. It was connected with

an international movement of mathematicians with other centers being L. Schwartz in

France, S. Smale in USA, and E.B.Dynkin in USSR. This, together with the conflict

on the relocation problem of the university, took our energy. Nevertheless, works such

as the excursion theory by Motoo and the theory of processes with infinitely divisible

joint distributions by Maruyama were done there.

Now let me turn to recollection of joint meetings with USSR in probability.

Symposiums in Probability Theory (and Mathematical Statistics) between Japan

and USSR were held seven times from 1969 to 1995. The beginning was a let-

ter to Dynkin from Maruyama. USSR probabilists (including A.N.Kolmogorov,

Yu.V.Prokhorov, A.N. Shiryaev, Ya.G. Sinai, and Dynkin) reacted to the letter by

preparing the Habarovsk symposium and continuation of joint meetings by alter-

nate organization in the two countries was hoped for. In fact, the seventh in 1995

was called Japan–Russia as USSR was non-existent, but in essence it was between

Japan and the former USSR. Among the seven, four were in USSR and three were in

Japan. In chronological order, they were held at Habarovsk, Kyoto, Tashkent, Tbilisi,

Kyoto, Kiev, Tokyo. The four proceedings from the second symposium to the fifth

were published in Lecture Notes in Mathematics (Springer) and the two proceedings

of the sixth and seventh were published by World Scientific, Singapore. I did not join

the first one, but attended all others. The symposiums had three kinds of difficulties.

First, for the people of USSR traveling abroad was possible only by special permis-

sion, which was often hard to get. Some persons such as Dynkin could not get exit

visa. Second, in Japan at that time we could hardly have financial support in going

to meetings abroad or in preparing international meetings inside the country. Third,

some people in probability seminars in Japan were strongly against the USSR regime

and they argued that such symposiums meant taking part in the discrimination and

suppression in USSR, so that many times we had to have long discussions. I wrote an
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article22 on the history of the symposiums. I still have vivid memories of the USSR

probabilists and their conditions of life and work.
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