List of mathematical papers 1961-1999

  1. K. Sato (1961) Integration of the generalized Kolmogorov-Feller backward equations. J. Fac. Sci. Univ. Tokyo, Sect. I, Vol. 9, 13-27.
  2. K. Sato, H. Tanaka (1962) Local times on the boundary for multi-dimensional reflecting diffusion. Proc. Japan Acad., Vol. 38, 699-702.
  3. M. Nagasawa, K. Sato (1962) Remarks to "The adjoint processes of diffusions with reflecting barrier". Kôdai Math. Sem. Rep., Vol. 14, 119-122.
  4. K. Sato (1963) Time change and killing for multi-dimensional reflecting diffusion. Proc. Japan Acad., Vol. 39, 69-73.
  5. M. Nagasawa, K. Sato (1963) Some theorems on time change and killing of Markov processes. Kôdai Math. Sem. Rep., Vol. 15, 195-219.
  6. N. Ikeda, M. Nagasawa, K. Sato (1964) A time reversion of Markov processes with killing. Kôdai Math. Sem. Rep., Vol. 16, 88-97.
  7. K. Sato, T. Ueno (1965) Multi-dimensional diffusion and the Markov process on the boundary. J. Math. Kyoto Univ., Vol. 4, 529-605.
  8. K. Sato (1965) A decomposition of Markov processes. J. Math. Soc. Japan, Vol. 17, 219-243.
  9. K. Sato (1968) On the generators of nonnegative contraction semigroups in Banach lattices. J. Math. Soc. Japan, Vol. 20, 423-436.
  10. K. Gustafson, K. Sato (1969) Some perturbation theorems for nonnegative contraction semigroups. J. Math. Soc. Japan, Vol. 21, 200-204.
  11. K. Sato (1970) Lévy measures for a class of Markov processes in one dimension. Trans. Amer. Math. Soc., Vol. 148, 211-231.
  12. K. Sato (1970) Positive pseudo-resolvents in Banach lattices. J. Fac. Sci. Univ. Tokyo, Sec. I, Vol. 17, 305-313.
  13. K. Sato (1970) On dispersive operators in Banach lattices. Pacific J. Math., Vol. 33, 429-443.
  14. K. Sato (1972) A note on nonlinear dispersive operators. J. Fac. Sci. Univ. Tokyo, Sec. IA, Vol. 18, 465-473.
  15. K. Sato (1972) Potential operators for Markov processes. Proc. Sixth Berkeley Symp. Math. Statist. Probab. (ed. L. M. Le Cam et al., Univ. California Press, Berkeley), Vol. 3, 193-211.
  16. K. Sato (1972) A note on infinitesimal generators and potential operators of contraction semigroups. Proc. Japan Acad., Vol. 48, 450-453.
  17. K. Sato (1972) Cores of potential operators for processes with stationary independent increments. Nagoya Math. J., Vol. 48, 129-145.
  18. K. Sato (1973) A note on infinitely divisible distribiutions and their Lévy measures. Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, Vol. 12, 101-109.
  19. K. Sato (1976) Asymptotic properties of eigenvalues of a class of Markov chains induced by direct product branching processes. J. Math. Soc. Japan, Vol. 28, 192-211.
  20. K. Sato (1976) Diffusion processes and a class of Markov chains related to population genetics. Osaka J. Math., Vol. 13, 631-659.
  21. K. Sato (1976) A class of Markov chains related to selection in population genetics. J. Math. Soc. Japan, Vol. 28, 621-637.
  22. K. Sato (1976) Convergence to diffusion processes for a class of Markov chains related to population genetics. Proc. Third Japan-USSR Symp. on Prob. Th. (ed. G. Maruyama and J. V. Prokhorov, Lect. Notes in Math., No. 550, Springer, Berlin), 550-561
  23. K. Sato (1977) A note on convergence of probability measures on $C$ and $D$. Ann. Sci. Kanazawa Univ., Vol. 14, 1-5.
  24. K. Sato, M. Yamazato (1978) On distribution functions of class $L$. Zeit. Wahrsch. Verw. Gebiete, Bd. 43, 273-308.
  25. K. Sato (1978) Convergence of a class of Markov chains to multi-dimensional degenerate diffusion processes. Proc. Internat. Symp. on Stoch. Diff. Eq., Kyoto, 1976 (ed. K. Itô, Kinokuniya, Tokyo), 367-383.
  26. K. Sato (1978) Convergence to a diffusion of a multi-allelic model in population genetics. Adv. Appl. Probab., Vol. 10, 538-562.
  27. K. Sato (1978) Urbanik's class $L_m$ of probability measures. Ann. Sci. Kanazawa Univ., Vol. 15, 1-10.
  28. K. Sato (1978) Diffusion operators in population genetics and convergence of Markov chains. Measure Theory, Applications to Stoch. Analysis (ed. G. Kallianpur and D. Kölzow, Lect. Notes in Math., No. 695, Springer, Berlin), 127-137.
  29. K. Sato (1979) On densities of multivariate distributions of class $L$. Ann. Sci. Kanazawa Univ., Vol. 16, 1-9.
  30. K. Sato (1980) Class $L$ of multivariate distributions and its subclasses. J. Multivar. Anal., Vol. 10, 207-232.
  31. K. Sato, M. Yamazato (1981) On higher derivatives of distribution functions of class $L$. J. Math. Kyoto Univ., Vol. 21, 575-591.
  32. K. Sato (1982) Absolute continuity of multivariate distributions of class $L$. J. Multivar. Anal., Vol. 12, 89-94.
  33. K. Sato, M. Yamazato (1983) Stationary processes of Ornstein-Uhlenbeck type. Probability Theory and Mathematical Statistics, Fourth USSR-Japan Symp., Proc. 1982 (ed. K. Itô and J. V. Prokhorov, Lect. Notes in Math. No. 1021, Springer, Berlin), 541-551.
  34. K. Sato (1983) Limit diffusions of some stepping-stone models. J. Appl. Prob., Vol. 20, 460-471.
  35. K. Sato, M. Yamazato (1984) Operator-self-decomposable distributions as limit distributions of processes of Ornstein--Uhlenbeck type. Stoch. Proc. Appl., Vol. 17, 73-100.
  36. K. Sato, M. Yamazato (1985) Completely operator-self-decomposable distributions and operator-stable distributions. Nagoya Math. J., Vol. 97, 71-94.
  37. K. Sato (1986) Bounds of modes and unimodal processes with independent increments. Nagoya Math. J., Vol. 104, 29-42.
  38. K. Sato (1986) Behavior of modes of a class of processes with independent increments. J. Math. Soc. Japan, Vol. 38, 679-695.
  39. K. Sato (1987) Unimodality and bounds of modes for distributions of generalized sojourn times. Stochastic Methods in Biology (ed. M. Kimura, G. Kallianpur and T. Hida, Lect. Notes in Biomath., No. 70, Springer, Berlin) 210-221.
  40. K. Sato (1987) Modes and moments of unimodal distributions. Ann. Inst. Stat. Math., Vol. 39, 407-415.
  41. K. Sato (1987) Strictly operator-stable distributions. J. Multivar. Anal., Vol. 22, 278-295.
  42. K. Sato (1988) Some classes generated by exponential distributions. Probability Theory and Math. Statistics, Fifth Japan-USSR Symp. (ed. S. Watanabe and Yu. V. Prokhorov, Lect. Notes in Math., No. 1299, Springer, Berlin), 454-463.
  43. K. Sato (1988) On zeros of a system of polynomials and application to sojourn time distributions of birth-and-death processes. Trans. Amer. Math. Soc., Vol. 309, 375-390.
  44. K. Sato (1990) Subordination depending on a parameter. Probabability Theory and Mathematical Statistics, Proc. Fifth Vilnius Conf. (ed. B. Grigelionis et al., VSP/Mokslas, Utrecht/Vilnius) Vol. 2, 372-382.
  45. K. Sato (1990) Distributions of class $L$ and self-similar processes with independent increments. White Noise Analysis. Mathematics and Applications (ed. T. Hida et al., World Scientific, Singapore), 360-373.
  46. K. Sato (1991) Self-similar processes with independent increments. Probab. Theory Related Fields, Vol. 89, 285-300.
  47. M. Fukushima, K. Sato, S. Taniguchi (1991) On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures. Osaka J. Math., Vol. 28, 517-535.
  48. K. Sato (1992) On unimodality and mode behavior of Lévy processes. Probability Theory and Mathematical Statistics, Proc. Sixth USSR-Japan Symp. (ed. A. N. Shiryaev et al., World Scientific, Singapore), 292-305.
  49. K. Sato, M. Yamazato (1993) Remarks on recurrence criteria for processes of Ornstein-Uhlenbeck type. Functional Analysis and Related Topics, 1991 (ed. H. Komatsu, Lect. Notes in Math. No. 1540, Springer, Berlin), 329-340.
  50. K. Sato (1993) Convolution of unimodal distributions can produce any number of modes. Ann. Probab., Vol. 21, 1543-1549.
  51. K. Sato (1994) Multimodal convolutions of unimodal infinitely divisible distributions. Teoriya Veroyatnostei i ee Primeneniya, Tom 39, 403-415 (Theory Probab. Appl., Vol. 39, 336-347).
  52. K. Sato (1994) Time evolution of distributions of Lévy processes from continuous singular to absolutely continuous. Research Bulletin, College of General Education, Nagoya Univ., Ser. B, No. 38, 1-11.
  53. K. Sato, T. Watanabe, M. Yamazato (1994) Recurrence conditions for multidimensional processes of Ornstein-Uhlenbeck type. J. Math. Soc. Japan, Vol. 46, 245-265.
  54. K. Sato (1995) Time evolution in distributions of Lévy processes. Southeast Asian Bull. Math. Vol. 19, No. 2, 17-26.
  55. G. S. Choi, K. Sato (1995) Recurrence and transience of operator semi-stable processes. Proc. Japan Acad. Vol. 71, Ser. A, 98-100.
  56. K. Sato (1996) Criteria of weak and strong transience for Lévy processes. Probability Theory and Mathematical Statistics, Proc. Seventh Japan-Russia Symp. (ed. S. Watanabe et al., World Scientific, Singapore), 438-449.
  57. K. Sato, T. Watanabe, K. Yamamuro, M. Yamazato (1996) Multidimensional process of Ornstein-Uhlenbeck type with nondiagonalizable matrix in linear drift terms. Nagoya Math. J. Vol. 141, 45--78.
  58. G. S. Choi, K. Sato (1996) Stable, semi-stable, operator stable, and operator semi-stable process. Proc. of Applied Math. Workshop, Vol. 6 (Probability and Queueing Theory, Center for Applied Math., KAIST, Taejon, Korea, ed. B. D. Choi), 357-369.
  59. K. Sato (1997) Time evolution of Lévy processes. Trends in Probability and Related Analysis, Proc. SAP '96 (ed. N. Kono and N.-R. Shieh, World Scientific, Singapore), 35-82.
  60. K. Sato, K. Yamamuro (1998) On selfsimilar and semi-selfsimilar processes with independent increments. J. Korean Math. Soc. Vol. 35, 207-224.
  61. K. Sato (1998) Multivariate distributions with selfdecomposable projections. J. Korean Math. Soc. Vol. 35, 783-791.
  62. K. Sato, F. W. Steutel (1998) Note on the continuation of infinitely divisible distributions and canonical measures. Statistics, Vol. 31, 347-357.
  63. M. Maejima, K. Sato (1999) Semi-selfsimilar processes. J. Theor. Probab. Vol. 12, 347-373.
  64. M. Maejima, K. Sato, T. Watanabe (1999) Exponents of semi-selfsimilar processes. Yokohama Math. J., Vol. 47, 93-102.
  65. M. Maejima, K. Sato, T. Watanabe (1999) Operator semi-selfdecomposability, $(C,Q)$-decomposability and related nested classes. Tokyo J. Math., Vol. 22, 473-509.
  66. K. Sato (1999) Semi-stable processes and their extensions. Trends in Probability and Related Analysis, Proc. SAP '98 (ed. N. Kono and N.-R. Shieh, World Scientific, Singapore), 129-145.


Return to the top page