
Banach lattices, potential operators, population-genetic

models, L distributions, and Lévy processes

Ken-iti Sato

Note. On June 25, 1994, Extended Nagoya Probability Seminar was orga-

nized for the occasion of my kanreki1. Three talks were given:

Minoru Motoo, Mr. Ken-iti Sato around 1960-1970,

Makoto Yamazato, In the joint work with Sato-san,

Ken-iti Sato, Banach lattices, potential operators, population-genetic mod-

els, L distributions, and Lévy processes.

At that time I wrote and privately distributed a report of my talk in Japan-

ese. The present article is its translation by myself written up in February

2020. Corrected or inserted sentences are given in braces { }.

Part I is an extension of my talk on June 25, 1994. Part II is a slight enlargement

of the list that was handed out. {The items in Part II are cited by the numbers there

such as [1.1], [2.1], and *[2.5]. }

Part I

College of General Education of Nagoya University was reorganized to Faculty

and Graduate School of Informatics and Sciences, after some exchange of members

with other faculties. In this process we had to write up our lists of papers to a review

committee repeatedly with explanation for each paper. Looking back to my papers

brought various thoughts to me. Paul Lévy recollected his works in his autobiography

Quelques Aspects de la Pensée d’un Mathématicien, Albert Blanchard, 1970 (Japanese

translation by T.Hida and K.Yamamoto, Iwanami, 1973), making various comments,

sometimes being regretful. I have no work with a scale as big as his, but I am also

going to talk some thoughts on my papers.

1{The sixtieth birthday is called kanreki, which means return to the same year according to the
traditional Chinese calendar imported to Japan. In the calendar each of 60 years has a different
name so that the name of year is periodic with period 60. Actually two sets of periodic names are
combined, one has period 10 (5 natural elements, each elder and younger), the other has period 12
(animal names), and 60 is the least common multiple of 10 and 12.}
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1. Boundary behavior problem of Markov processes.

Let me add something to Motoo’s talk today. In 1966-1967 I was working hard

for analytic construction of multi-dimensional diffusions satisfying A.D.Wentzell’s

boundary condition2. I reported on this subject at meetings of Math. Society of

Japan and seminars at University of Minnesota, which were *[2.5], *[2.6], and *[2.7].

Among them *[2.5] was a joint work with Motoo. To our regret, we did not write

those results as a paper. It was because J.-M.Bony, Ph.Courrège, and P.Priouret

in France continued our works (especially [2.3] of T.Ueno and me) and wrote papers

first in C. R. Acad. Sci. Paris Ser. A-B 263 (1966), A451–A454, and then Séminaire

Brelot–Choquet–Deny, 10, fasc. 1 et 2, (1965/66) and Ann. Inst. Fourier (Grenoble),

tom. 18, fasc. 2 (1969), 369–521, which made our writing a hard task. However the

method of those joint authors in France was different from ours so that the obtained

sufficient conditions for the construction were not the same. So our results would

have had some value, but we wanted to improve it and eventually did not write it.

For me the boundary behavior problem was thus left unfinished.

Among Japanese probabilists, S.Watanabe3 showed pathwise construction of dif-

fusions with Wentzell’s boundary condition and Motoo4 gave beautiful results on

probabilistic decomposition of excursions from and to boundary. {R.M.Blumenthal’s

book5 Excursions of Markov Processes, Birkhäuser, 1992, dedicated one chapter to

excursions away from a set, describing Motoo’s paper as one of the most important in

the field.} However, detailed proofs of Motoo’s results of his 1967 paper are available

only in Japanese6.

Unfortunately, we did not discover Wentzell’s boundary condition in Japan. Sev-

eral of us had studied one-dimensional works of Feller, Dynkin, and Ito–McKean and

were thinking about multi-dimensional problems. If they had set up the problem

and tackled it, they should have found the form of the boundary conditions with-

out difficulty. But it is questionable that they could have made explicit construction

of the solution in the case of the ball with the boundary condition having constant

2Teor. Veroyatn. Primen., 4 (1959), 172–185.
3Banach Center Publ., Vol. 5 (1979), 255–271.
4{Proc. Fifth Berkeley Symp. Math. Statist. Probab., Vol. 2, Part 2, 1967, 75–110.}
5{I did not know the book in 1994.}
6{H.Kunita, K. Sato, M.Fukushima, and M.Motoo, Diffusion processes and Markov processes

on boundary (in Japanese), Seminar on Probability, Vol. 22, 161 pages, published by Kakuritsuron
Seminar in 1965.}
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coefficients by the use of spherical functions, as Wentzell’s paper did. Our basis in

analysis was weaker.

Theory of Markov processes in Japan revolved on the axis of boundary behavior

problems and extended to larger subjects. The history should be written, reflecting

on the works of Motoo, N. Ikeda, Takesi Watanabe, T.Ueno, H.Tanaka, S. Watanabe,

M.Nagasawa, M.Fukushima, H.Kunita, Y.Okabe, and others.

2. Banach latices.

The real Banach spaces C, Lp, C∗ etc. have an order structure. A Banach lattice

is their generalization; it is a real Banach space and, at the same time, a lattice with

semi-order f ⩽ g (that is, for every f and g, f ∨ g = sup{f, g} and f ∧ g = inf{f, g}
are defined and hence |f | = f ∨ (−f), f+ = f ∨0, and f− = −(f ∧0) are also defined)

and moreover it satisfies

f ⩽ g =⇒ f + h ⩽ g + h,

f ⩽ g, a ∈ R+ =⇒ af ⩽ ag,

f ⩽ g =⇒ −f ⩾ −g,

|f | ⩽ |g| =⇒ ∥f∥ ⩽ ∥g∥.

My work in Banach lattices was no more than the discovery of good functional σ(f, g);

I remember that I was very glad when I found it. Minoru Hasegawa7 was the first

who used

τ(f, g) = lim
ϵ↓0

ϵ−1(∥f + ϵg∥ − ∥f∥)

in the theory of operator semigroups. In [4.1] I introduced for f ⩾ 0

σ(f, g) = inf
k

lim
b→∞

τ(f, (g + k) ∨ (−bf)),

where k runs over all elements satisfying f ∧ |k| = 0. This functional σ(f, g) has nice

properties and is useful in characterization of the infinitesimal generator of a positive

contraction semigroup; it is usable further in the theory of sums of infinitesimal

generators. The following are some of its nice properties:

−∥g−∥ ⩽ σ(f, g) ⩽ ∥g+∥,

σ(f, g + h) ⩽ σ(f, g) + σ(f, h),

g ⩽ h =⇒ σ(f, g) ⩽ σ(f, h),

f ∧ |h| = 0 =⇒ σ(f, g) = σ(f, g + h).

7J. Math. Soc. Japan, 18 (1966), 290–302.
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Let A be the Hille–Yosida infinitesimal generator of a strongly continuous semigroup

Tt with domain D(A). Then Tt is a positive contraction semigroup if and only if

(1) σ(f+, Af) ⩽ 0 for all f ∈ D(A).

I called the property (1) dispersive. This can be used also for nonlinear operators.

The concrete representations of σ(f, g) are, for f ⩽ 0 with f ̸= 0,

σ(f, g) = max
f(x)=∥f∥

g(x) in C(X) or C0(X),

σ(f, g) =

∫
{f(x)>0}

g(x)m(dx) in L1(X,m),

σ(f, g) = ∥f∥−p+1

∫
X

f(x)p−1g(x)m(dx) in Lp(X,m), 1 < p < ∞,

σ(f, g) = gacf (X) in C∗(X) where gacf is the absolutely continuous part

of g with respect to f,

and so on. Hence, for C(X), the property (1) means that Af(x) ⩽ 0 at the point x

where f(x) = maxy f(y) > 0, that is, the characterization of elliptic operator.

A Markov semigroup Tt in the space L2 further satisfies Ttf ⩽ 1 for f ⩽ 1; the

characterization of its infinitesimal generator was given by Kunita (Proc. Internat.

Conf. on Func. Anal. and Rel. Topics, Tokyo, 1970, 332–343). I gave its generalization

in [4.4]. There I showed that

ρ(f, g) = lim
ϵ↓0

ϵ−1(∥(f + ϵg)+∥ − ∥f+∥)

can also be used for the same purpose as σ(f, g), but σ(f, g) has nicer forms in

concrete Banach lattices.

The functional σ(f, g) was employed by Yoshio Konishi (Proc. Japan Acad., 47

(1971), 24–28; 48 (1972), 281–286, etc.) for nonlinear evolution equations. But I am

disappointed that books on Banach lattices or positive semigroups do not use this

functional even when its use could make their argument simpler. (After this talk

Hideo Nagai told me that L.C. Evans and his collaborator8 refer to [4.1], but its full

use is not done.)

3. Potential operators.

When I was in the fourth year of the undergraduate and in the master course

in University of Tokyo, my adviser was K.Yosida (1909–1990). The Hille–Yosida

8L.C. Evans, Indiana Univ. Math. J., 27 (1978), 875–887; L.C. Evans and A. Friedman, Trans. A.
M. S., 253 (1979), 365–389; L.C. Evans, Israel J. Math., 36 (1980), 225–247.
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theory of semigroups of linear operators is famous; this work was done independently

by the two (Yosida’s was J. Math. Soc. Japan, 1 (1948), 15–21). Twenty years after,

Yosida wrote a paper that is a direct continuation (Studia Math., 31 (1968), 531–533).

Namely, let Tt be a strongly continuous semigroup of linear operators in a Banach

space B, A its infinitesimal generator, and Jλ the resolvent of A given by

Jλf = (λ− A)−1f =

∫ ∞

0

e−λtTtfdt for λ > 0.

Then he said that Tt has potential operator V if s-lim
λ↓0

Jλf exists for dense f in B, and

defined V f by this limit. Next he showed that each of the following three statements

is a necessary and sufficient condition for Tt to have potential operator:

the range R(A) of A is dense in B,(2)

s-lim
λ↓0

λJλf = 0 for all f,(3)

s-lim
t↑∞

t−1

∫ t

0

Tsfds = 0 for all f.(4)

If Tt has potential operator V , then A is one-to-one, D(V ) = R(A), and V = A−1.

Sometimes V is called the potential operator in Yosida’s sense.

I showed in [5.1] that if the Markov process associated with a semigroup Tt in C0

is transient or null-recurrent, then Tt has potential operator, and that if the process

is positive-recurrent, then Tt does not have potential operator. I also calculated the

potential operators in the case of stable processes and some others..

I would like to mention that, in [5.2], I pointed out that F.Hirsch’s paper in

1970 (C. R. Acad. Sci. Paris, 270, 1487–1490) and Yosida’s paper in 1972 (Publ. R.

I. M. S., 8, 201–205) say essentially the following result on Hilbert spaces and that it

cannot be extended to Banach spaces.

If B is a Hilbert space and A is a linear operator with domain dense in B, then

the following two conditions (5) and (6) are equivalent:

A is the infinitesimal generator of a strongly continuous contraction(5)

semigroup T
(1)
t with potential operator,

−A is the potential operator of a strongly continuous contraction(6)

semigroup T
(2)
t .

I wonder how T
(1)
t and T

(2)
t are intrinsically connected. They are adjoints in some

sense. In the case of B = L2, even if one of T
(1)
t and T

(2)
t is positive, the other is
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not necessarily positive. If B is a Banach space, then, under the condition (5), the

condition (6) is equivalent to

∥λJλ − 1∥ ⩽ 1 for all λ > 0.

If B is a Hilbert space, then always ∥λJλ − 1/2∥ ⩽ 1/2.

4. Tails of infinitely divisible distributions.

The paper [6.1] published in 1973 is my first work on infinitely divisible distribu-

tions themselves, although infinitesimal generators and potential operators of Lévy

processes were treated before that. Let me state main results in one dimension (d-

dimensional case is similar). Let µ be an infinitely divisible distribution with Lévy

measure ν.

(i) If g(x) is submultiplicative, then
∫
g(x)µ(dx) < ∞ and

∫
|x|>1

g(x)ν(dx) < ∞
are equivalent. Here we call g(x) submultiplicative if g(x) ⩾ 0 and there is a > 0

such that g(x + y) ⩽ ag(x)g(y). For example, if α > 0, then (1 ∨ log |x|)α, 1 ∨ |x|α,
and eα|x| are submultiplicative.

(ii) Let b = inf{r : ν(|x| > r) = 0} with convention that inf ∅ = ∞．Then∫
eα|x| log |x|µ(dx) is finite for α < 1/b and infinite for α > 1/b.

Assertion (ii) or its expression in the order of decrease of the tail is fairly often

cited among my results. First I submitted a paper containing only (i) to Ann. Math.

Stat. and it was accepted {with a minor revision assumed}. Just at that time it was

announced that Ann. Math. Stat. would be divided into Ann. Prob. and Ann. Stat.

So I told that I preferred Ann. Prob. Then the paper was refereed again, and rejected

by Ann. Prob. by reason that the same result existed in V.M.Kruglov’s paper (Teor.

Veroyatn. Primen., 15 (1970), 330–336). Thus I found the result (i) was already given

by Kruglov in one dimension. Kruglov also showed (i) in d dimensions and Hilbert

spaces later. Further he showed in one dimension that boundedness of the support of

ν implies the finiteness of the integral in (ii) for some α > 0, which is a part of (ii). So

I thoroughly generalized it in the form (ii) in d dimensions, where V.M. Zolotarev’s

estimate9 of large deviations was helpful.

The paper [6.1] does not seem to have attracted the interest of many people,

but I was encouraged by Gisiro Maruyama (1916–1986), who wrote the paper10 on

infinitely divisible processes shortly before. I feel that I got some intuition in the

relation of infinitely divisible distributions and their Lévy measures around the time

9Teor. Veroyatn. Primen., 10 (1965), 33–50.
10Teor. Veroyatn. Primen., 15 (1970), 3–23.
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when I wrote [6.1]. However, the relation is quite complicated; the problem of time

evolution of the distribution of a Lévy process is connected with this relation and

many problems are unsolved even in one dimension.

5. Population-genetic models.

Main works in this subject are [7.1], [8.1], [8.2], and [8.6]; except [8.6], they were

done 1975–1975. In 196411 and 196512 S.Karlin and J.McGregor introduced as an

object of research the following Markov chains induced by direct product branching

processes. They are treated also in Karlin’s book (A First Course in Stochastic

Processes, Academic Press, 1969)13. Let Z1(n) and Z2(n) be independent Galton–

Watson processes (branching processes) with a common distribution of the number

of offspring of one individual. Let f(s) =
∑∞

k=0 cks
k be the generating function of the

distribution and assume that c0c1c2 > 0. For any positive integer N , let

P
(N)
jk = P (Z1(n+ 1) = k |Z1(n) = j, Z2(n) = N − j, Z1(n+ 1) + Z2(n+ 1) = N)

and consider the Markov chain on the set {0, 1, . . . , N} with one-step transition prob-

ability P
(N)
jk . They showed that, if they choose f(s) appropriately, sometimes making

a modification of this model, many a population-genetic model is realized as this

Markov chain. Further they showed that the transition matrix (P
(N)
jk ) is diagonaliz-

able with eigenvalues

1 = λ
(N)
0 = λ

(N)
1 > λ

(N)
2 > · · · > λ

(N)
N > 0

and proved that

(7) λ(N)
r =

coefficient of sN−r in f(s)N−rf ′(s)r

coefficient of sN in f(s)N

for r = 0, 1, . . . , N . This is the model of two alleles, but the case of three or more

alleles can be treated similarly and the step of mutation and immigration can be

inserted. But natural selection cannot be taken into account. An especially important

quantity is λ
(N)
2 , which represents the speed of approach to fixation. They showed

that if f(s) is of Poisson, binomial, or negative-binomial, then

(8) 1− λ
(N)
2 ∼ const

N
as N → ∞.

11Proc. Nat. Acad. Sci. U. S.A., 51, 598–602.
12Bernoulli Bayes Laplace Anniversary Volume, Springer, 111–145.
13It is translated into Japanese by Ken-iti Sato and Yumiko Sato (Kakuritsu Katei Kôgi, Sangyô

Tosho, 1974). {My first encounter with this book was as textbook when I taught an undergraduate
course on stochastic processes at University of Illinois in 1968/69.}

7



W.J.Ewens14 remarked that if the distribution for f(s) has mean 1, then the constant

in (8) is its variance σ2. I was interested whether (8) is true in general, what is the

meaning of the constant if (8) is true, what can be said about λ
(N)
r , what happens when

both r and N go to infinity, and so on. This was my motivation for studying genetic

models. I hardly had personal influence of anybody in Japan, {although there was

a strong group of population geneticists headed by M.Kimura}15. However, genetic

models lay as one of the starting points of W.Feller’s study of diffusion processes16.

As early as 1922 R.A. Fisher mentioned the heat equation for the temporal change of

gene frequency.

Looking at the formula (7), I thought the analysis of large deviations must be

helpful in order to study behavior of λ
(N)
r as N → ∞. Thus I studied the works of

H.Cramér, V.V. Petrov, W. Richter, I.A. Ibragimov–Yu.V. Linnik, etc. Among them

I learned Cramér17 intensively and was impressed by his argument (Laplace method).

Other people’s works were development of Cramér’s. In the book by Ibragimov and

Linnik (English translation is Independent and stationary sequences of random vari-

ables, Wolters-Noordhoff, 1971), Linnik writes the theory of large deviations under

conditions weaker than Cramér’s, but it was so difficult that I could not check a

number of places. Soon after the appearance of the three papers of M.D.Donsker and

S.R.S.Varadhan (Comm. Pure Appl. Math., 28), the theory became popular also in

Japan but, earlier, I was only one tackling large deviations theory in the probability

group in Japan, I think.

Using the method of large deviations, I obtained in [7.1]

(9) 1− λ(N)
r =

ar,1
N

+
ar,2
N2

+ · · ·+ ar,p
Np

+O

(
1

Np+1

)
as N → ∞

and expression of the coefficients (ar,1 = σ2r(r − 1)/2 and so on). The case where r

and N get bigger simultaneously could also be treated; for example, if c > 0 is fixed,

then

(10) λ
(N)

[c
√
N ]

= e−σ2c2/2

(
1 +O

(
1√
N

))
as N → ∞.

14Population genetics, Mathuen, 1969. See page 41.
15{A bit later A. Shimizu and T. Shiga began to write on genetic models.}
16Proc. Second Berkeley Symp. Math. Stat. Prob., 1951, 227–246; Ann. Math., 54 (1951), 173–

182.
17Actualités Scientifiques et Industrielles, No. 736, 1938, 5–23.
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This Markov chain converges to the diffusion process determined by

∂u

∂t
=

σ2

2
x(1− x)

∂2u

∂x2
for 0 ⩽ x ⩽ 1

as N → ∞, if we make a suitable change of time and space scales. As the differential

operator in the right-hand side has discrete spectrum λr, r = 0, 1, . . . and λr = ar,1,

the first term in (9) expresses the convergence of spectrum

(λ(N)
r )Nt → e−ar,1t as N → ∞.

The remaining terms in (9) would be related to the speed of the convergence of this

Markov chain to the diffusion process. Further, the eigenvectors would converge to

the eigenfunctions. But I did not go to proving them. Conversely, for a like model,

Karlin and McGregor18 demonstrated the convergence of a Markov chain to a diffusion

from the convergence of eigenvalues and eigenvectors.

The Markov chain of Karlin and McGregor converges to the diffusion process

∂u

∂t
=

σ2

2
x
∂2u

∂x2
for 0 ≤ x < ∞

as N → ∞, if we make some other change of scales; the differential operator in the

right-hand side has a continuous spectrum except a point spectrum at 0. The result

(10) would show the convergence of spectral density in this case, but I did not prove

it. The eigenvector might converge to the generalized eigenfunction.

In the paper [8.1] I treated the convergence to a multi-dimensional diffusion

process for a generalization of the above Markov chain. However, in the case of

the dimension ⩾ 2, I could not prove the uniqueness of the corresponding diffusion

process except in some special cases, because of the degeneracy on the boundary of

the limit diffusion operator. While I was preparing the paper [8.1], in November 1975

at Chicago, I was introduced to S.N. Ethier and learned that he had worked on the

same equation in his doctor thesis and found a nice method to prove the uniqueness,

employing that the coefficients of the second order derivatives are polynomials of

order 2. Ethier proposed me to unite his result and my yet unpublished [8.1] to a

joint paper; it would have been a very good paper. But I did not agree, as I thought

that it would be better for a first paper of a young student to be written only by

himself. His paper appeared in Comm. Pure Appl. Math., 29 (1976), 483-493.

I succeeded to deal with the convergence of genetic models involving natural

selection to diffusion processes in [8.2]. Thus I came out of the Karlin–McGregor

18Proc. Camb. Phil. Soc., 58 (1962), 299–311.
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model for the first time. I made asymptotic estimate of moments, fully using the

Laplace method.

Let us proceed to [8.6]. {We consider a Markov chain on the d-dimensional (d-

allelic) nonnegative lattice points with the sum of components being N , where one-

step transition consists of two stages — independent reproduction and sampling of size

N . If the distributions of offspring numbers have a common mean for all alleles, then

the difference of variances affects the form of the limiting (d−1)-dimensional diffusion

operator19 as N → ∞, where the time span for one-step transition is equal to N−1.}
When d = 2, this fact was discovered by J.H.Gillespie (Genetics, 76 (1974), 601–606;

77 (1975), 403–413) and he showed, with heuristic proofs, that the limiting diffusion

operator has a polynomial of order 3 in the coefficient of the second-order derivative

and the smaller variance works as advantageous selection force. M.F.Norman called

my attention to Gillespie’s paper. I was interested what form of coefficients would

appear in the case d ⩾ 3 and how the convergence would be justified. This was

done in [8.6]. If mutation is added in this model, then the boundary becomes non-

absorbing and I did not succeed in proving the uniqueness of the limiting diffusion

process. This was finally proved by a beautiful paper of T. Shiga (Math. Soc. Japan,

39 (1987), 17–25).

About population genetics I only studied M.Kimura’s introductory book in Japan-

ese (Shûdan-iden-gaku Gairon, Baifûkan, 1960). I did not know much while I was

working on genetic models. I wanted more systematic knowledge before deciding my

future direction and studied in 1977–1978 the book by J.F.Crow and M.Kimura, An

introduction to population genetics theory, Harper and Row, 1970. But it was not

exciting to me and I was far more interested in infinitely divisible distributions and

Lévy processes. I did not work on genetic models any thereafter.

6. Distributions of class L 20.

When I was back to Tokyo near the end of June, 1976, after the visit to Univer-

sity of Minnesota from fall 1975, I heard from Makoto Yamazato about his proof of

unimodality of all distributions of class L on the line. It had a long-lasting impact

on me. His key lemma was a great idea and, above all, the fact was overwhelming

that he continued to attack the problem that had been unsolvable by many people

and really succeeded in the proof, as we checked. The book by B.V.Gnedenko and

19{More precisely, the operator for the limiting diffusion process on a (d−1)-dimensional simplex
in the d-dimensional space.}

20{Now distributions of class L are usually called selfdecomposable distributions.}
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A.N. Kolmogorov contained the “proof” of this unimodality given by A.I. Lapin but,

in translating it into English (Limit distributions for sums of independent random

variables, Addison-Wesley, 1954), K.L.Chung21 found that a lemma used by Lapin

was erroneous and thus the unimodality is an open problem. Then more than five

papers had been written but none of them had proved or disproved it. Stable dis-

tributions belong to the class L, but they also had no proof of unimodality in the

non-symmetric two-sided case. Unimodality of one-sided distributions of class L was

proved by S.J.Wolf22. But we did not know it. I remember that Yamazato also proved

this before the fall of 1975 and said that the two-sided case was hard.

As Yamazato talked today, he became interested in the class L, since distributions

appearing in limit theorems for branching processes were of class L. In my case, after

the work by him, I made the study of more detailed properties of distributions of

class L on the line, the study of some related classes in general dimensions, and so

on, sometimes jointly with him and sometimes independently. With great effort I

worked on absolute continuity of multi-dimensional distributions of class L and on

characterization of strictly operator-stable distributions.

It is easy to see that distributions of class L on the line are absolutely continuous

except the case degenerate to one-point mass. But it had been unknown whether non-

degenerate distributions of class L in higher dimensions were absolutely continuous,

since their Lévy measures could be singular. I got an idea of some decomposition and

proved it in [11.2].

Any stable distribution on the d-dimensional space is a translate of a strictly

strictly stable distribution, when and only when its index α is not equal to 1. A stable

distribution of index 1 is strictly stable if and only if the spherical component of its

Lévy measure has barycenter at the origin. This fact is well known. I was interested

what is the corresponding condition in the case of operator-stable distributions and

gave a solution of this problem in [13.2]. But it is not known what intuitive meaning

this condition has in operator-stable processes and in limit theorems of partial sums

of independent identically distributed random variables in d dimensions (originally an

operator-stable distribution was introduced by M. Sharpe23 as the limit distribution of

a matrix normalization of partial sums of independent identically distributed random

variables in d dimensions).

21C. R. Acad. Sci. Paris, 236 (1953), 583–584.
22Ann. Math. Stat., 42 (1971), 912–918.
23Trans. A. M. S., 136 (1969), 51–65.
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In [17.1] and [17.2] I gave a characterization of any distribution of class L in d

dimensions as the distribution at a fixed time of a selfsimilar additive process (here

an additive process means a process continuous in probability having independent

increments and starting at 0). I think this expresses the essence of the class L,

although the proof is simple. It follows from this that two processes correspond to

each distribution of class L — one is a selfsimilar additive process and the other is a

Lévy process; both of them have the given distribution at time 1. I named the former

as a process of class L 24 and the latter as a selfdecomposable process. The study of

the former processes has hardly begun.

The characterization [12.2] of distributions of class L and, more generally, oper-

ator selfdecomposable distributions as the limit distributions of Ornstein–Uhlenbeck

type processes was obtained in the middle of 1981 as I was, jointly with Yamazato,

seeking the meaning of the equation that appeared in the analysis of class L; we

also had S.J.Wolfe’s preprint25 kindly sent to us. Almost at the same time the work

of Z.J. Jurek and W.Vervaat and the subsequent work of Wolfe obtained similar re-

sults. However, only our group is interested in Ornstein–Uhlenbeck type processes

themselves such as criterion of their recurrence and transience. The criterion was

given by T. Shiga26 in one dimension and, in higher dimensions, [18.2] was written

by Yamazato, Toshiro Watanabe, and me and [18.3] by those three joined by Kôji

Yamamuro, but there still remains an unsolved part.

7. Lévy processes27.

If a Lévy process Xt on the line has a distribution of class L at some t, then

it does so at all t, hence unimodal always. But a general Lévy process is far more

complicated; its distribution may have time evolution, such as change from unimodal

to non-unimodal or from non-unimodal to unimodal, or change repeatedly. Simple

examples were remarked by Wolfe28. I thought it was important to examine this

phenomenon more deeply and talked it in *[20.5]. I stress that the distribution of a

Lévy process can have qualitative time evolution, non-linear time evolution although

the increments of the process are homogeneous in time.

24{This naming “process of class L” is not used these days.}
25{This appeared later in Stoch. Proc. Appl., 12 (1982), 301–312.}
26Prob. Th. Rel. Fields, 85 (1990), 425–447.
27{In the original Japanese text, Lévy process is called kahou katei. The direct translation of this

word is additive process, but this was used in the meaning of the process now called Lévy process.}
28Zeit. Wahrsch., 45 (1978), 329–335.

12



In [20.3] I constructed, for an arbitrary positive integer n, a Lévy process on the

line which is unimodal at time 1 and n-modal at time 2. In the proof I made use of

F.W. Steutel’s result29 that any distribution on the half line with log-convex density

is infinitely divisible.

Concerning absolute continuity, results of H.Rubin and H.G.Tucker30 imply the

existence of a Lévy process on the line having a critical time t0 such that its distri-

bution is continuous singular for t < t0 and absolutely continuous for t > t0. I added

a number of such examples in [20.2].

Another remarkable work31 of Yamazato is the study of strong unimodality, which

is meaningful also from the view point of time evolution. It is sometimes powerful in

analyzing concrete Lévy processes on the line.

Toshiro Watanabe started, about 1988, intensive research on distributional prop-

erties of Lévy processes. I was happy to follow his works and to gain a new impetus.

He treated various examples for unimodality and movement of mode with involved

and ingenious analysis and, up to now, wrote seven papers beginning with the one

in Jap. J. Math., 15 (1989), 191–203. He found a new method which is an effective

use of the transformation of distributions on [0,∞) to discrete distributions (mix-

tures of Poisson distributions) introduced by G.Forst32 and others. I named this

transformation as Poisson transform in *[20.5] and gave an exposition in *[21.6].

On Lévy processes I gathered results systematically and wrote a book *[21.5].

There are many interesting objects other than Lévy and Ornstein–Uhlenbeck

type processes. I would like to work on them in the future. I would appreciate your

support.

Part II

Here is a list of my mathematical papers up to now. Some items other than

refereed papers are added with asterisks * .

1. Existence of Markov processes.

[1.1] Integration of the generalized Kolmogorov-Feller backward equations. J.

Fac. Sci. Univ. Tokyo, Sect. I, Vol. 9, 13–27. (1961)

29Math. Centre Tracts, No. 33, Amsterdam, 1970.
30Trans. A. M. S., 118 (1965), 316–330.
31Ann.Prob., 10 (1982), 589–601.
32Zeit. Wahrsch., 49 (1979), 349–352.
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[1.2] Lévy measures for a class of Markov processes in one dimension. Trans.

Amer. Math. Soc., Vol. 148, 211–231. (1970)

2. Boundary behavior problem of Markov processes.

[2.1] (With H.Tanaka) Local times on the boundary for multi-dimensional re-

flecting diffusion. Proc. Japan Acad., Vol. 38, 699–702. (1962)

[2.2] Time change and killing for multi-dimensional reflecting diffusion. Proc.

Japan Acad., Vol. 39, 69–73. (1963)

[2.3] (With T.Ueno) Multi-dimensional diffusion and the Markov process on the

boundary. J. Math. Kyoto Univ., Vol. 4, 529–605. (1965)

[2.4] A decomposition of Markov processes. J. Math. Soc. Japan, Vol. 17, 219–243.

(1965)

*[2.5] (With MMotoo) Estimate of fractional powers of elliptic differential op-

erators and its application to the problem of sums of infinitesimal generators (in

Japanese). Abstracts of contributed talks, Math. Soc. Japan, Section on probability

and statistics (May 1967), p. 5.

*[2.6] Existence of diffusion processes satisfying Wentzell’s boundary condition

containing second-order terms (in Japanese). Abstracts of contributed talks, Math.

Soc. Japan, Section on probability and statistics (May 1967), p. 6.

*[2.7] Diffusion processes with general boundary conditions and Ueno’s processes.

Seminar handout at University of Minnesota, 10 pages. (1967)

3. General theory of Markov processes. (Additive functionals, time reversal.)

[3.1] (With M.Nagasawa) Remarks to “The adjoint processes of diffusions with

reflecting barrier”. Kôdai. Math. Sem. Rep., Vol. 14, 119–122. (1962)

[3.2] (With M.Nagasawa) Some theorems on time change and killing of Markov

processes. Kôdai. Math. Sem. Rep., Vol. 15, 195–219. (1963)

[3.3] (With N. Ikeda and M.Nagasawa) A time reversion of Markov processes with

killing. Kôdai. Math. Sem. Rep., Vol. 16, 88–97. (1964)

*[3.4] Semigroups and Markov processes. Lecture Notes, Dept. Math., Univ.

Minnesota. (1968)

4. Banach lattices. Characterization of infinitesimal generators. Sums of infini-

tesimal generators.

[4.1] On the generators of nonnegative contraction semigroups in Banach lattices.

J. Math. Soc. Japan, Vol. 20, 423–436. (1968)
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[4.2] (With K.Gustafson) Some perturbation theorems for nonnegative contrac-

tion semigroups. J. Math. Soc. Japan, Vol. 21, 200–204. (1969)

[4.3] Positive pseudo-resolvents in Banach lattices. J. Fac. Sci. Univ. Tokyo,

Sec. I, Vol. 17, 305–313. (1970)

[4.4] On dispersive operators in Banach lattices. Pacific J. Math., Vol. 33, 429–

443. (1970)

[4.5] A note on nonlinear dispersive operators. J. Fac. Sci. Univ. Tokyo, Sec. IA,

Vol. 18, 465–473. (1972)

5. Potential operators.

[5.1] Potential operators for Markov processes. Proc. Sixth Berkeley Symp. Math.

Stat. and Prob., Vol. 3, Univ. Calif. Press, 193–211. (1972)

[5.2] A note on infinitesimal generators and potential operators of contraction

semigroups. Proc. Japan Acad., Vol. 48, 450–453. (1972)

[5.3] Cores of potential operators for processes with stationary independent in-

crements. Nagoya Math. J., Vol. 48, 129–145. (1972)

*[5.4] Potential operators for Markov processes (in Japanese). Theory of Markov

processes, RIMS Kôkyûroku, No. 112, 55–79. (1971)

6. Tails of infinitely divisible distributions.

[6.1] A note on infinitely divisible distributions and their Lévy measures. Sci.

Rep. Tokyo Kyoiku Daigaku, Sect. A, Vol. 12, 101–109. (1973)

7. Population-genetic models. (Estimate of eigenvalues. Large deviations.)

[7.1] Asymptotic properties of eigenvalues of a class of Markov chains induced by

direct product branching processes. J. Math. Soc. Japan, Vol. 28, 192–211. (1976)

*[7.2] Asymptotic properties of Markov chains arising in population genetics,

and limit theorems for large deviations (in Japanese). Studies of Markov processes,

Reports of Symposium in January 1975, Seminar on Probability, Vol. 41, 93–102.

(1975)

8. Population-genetic models. (Diffusion approximation. Natural selection.)

[8.1] Diffusion processes and a class of Markov chains related to population ge-

netics. Osaka J. Math., Vol. 13, 631–659. (1976)

[8.2] A class of Markov chains related to selection in population genetics. J. Math.

Soc. Japan, Vol. 28, 621–637. (1976)

15



[8.3] Convergence to diffusion processes for a class of Markov chains related to

population genetics. Proc. Third Japan–USSR Symp. on Prob. Th., Lect. Notes in

Math., Springer, No. 550, 550–561. (1976)

[8.4] A note on convergence of probability measures on C and D. Ann. Sci.

Kanazawa Univ., Vol. 14, 1–5. (1977)

[8.5] Convergence of a class of Markov chains to multi-dimensional degenerate

diffusion processes. Proc. Internat. Symp. on Stoch. Diff. Eq., Kinokuniya, 367–383.

(1978)

[8.6] Convergence to a diffusion of a multi-allelic model in population genetics.

Adv. Appl. Prob., Vol. 10, 538–562. (1978)

[8.7] Diffusion operators in population genetics and convergence of Markov chains.

Measure Theory, Applications to Stoch. Analysis, Lect. Notes in Math., Springer,

No. 695, 127–137. (1978)

[8.8] Limit diffusions of some stepping-stone models. J. Appl. Prob., Vol. 20,

460–471. (1983)

9. Fine properties of one-dimensional distributions of class L.

[9.1] (With M.Yamazato) On distribution functions of class L. Zeitsch. Wahr-

scheinlich. verw. Gebiete, Bd. 43, 273–308. (1978)

[9.2] (With M.Yamazato) On higher derivatives of distribution functions of class

L. J. Math. Kyoto Univ., Vol. 21, 575–591. (1981)

*[9.3] On distributions of class L (in Japanese). Studies of Markov processes,

Reports of Kanazawa Symposium in December 1976, Seminar on Prob., Vol. 44, 147–

162. (1977)

10. Subclasses of the class L.

[10.1] Urbanik’s class Lm of probability measures. Ann. Sci. Kanazawa Univ.,

Vol. 15, 1–10. (1978)

[10.2] Class L of multivariate distributions and its subclasses. J. Multivar. Anal.,

Vol. 10, 207–232. (1980)

11. Absolute continuity of multi-dimensional distributions of class L.

[11.1] On densities of multivariate distributions of class L. Ann. Sci. Kanazawa

Univ., Vol. 16, 1–9. (1979)

[11.2] Absolute continuity of multivariate distributions of class L. J. Multivar.

Anal., Vol. 12, 89–94. (1982)
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12. Relations of distributions of class L with Ornstein–Uhlenbeck type processes.

[12.1] (With M.Yamazato) Stationary processes of Ornstein–Uhlenbeck type.

Probability Theory and Math. Statistics, Fourth USSR-Japan Symp., Lect. Notes

in Math., Springer, No. 1021, 541–551. (1983)

[12.2] (With M.Yamazato) Operator-self-decomposable distributions as limit dis-

tributions of processes of Ornstein–Uhlenbeck type. Stoch. Proc. Appl., Vol. 17, 73–

100. (1984)

13. Operator-stable distributions.

[13.1] (With M.Yamazato) Completely operator-self-decomposable distributions

and operator-stable distributions. Nagoya Math. J., Vol. 97, 71–94. (1985)

[13.2] Strictly operator-stable distributions. J. Multivar. Anal., Vol. 22, 278–295.

(1987)

*[13.3] Lectures on multivariate infinitely divisible distributions and operator-

stable processes. Tech. Rep. Ser. Lab. Res. Stat. Prob., Carleton Univ. and Univ.

Ottawa, No. 54. (1985)

14. Behavior of modes of Lévy processes.

[14.1] Bounds of modes and unimodal processes with independent increments.

Nagoya Math. J., Vol. 104, 29–42. (1986)

[14.2] Behavior of modes of a class of processes with independent increments. J.

Math. Soc. Japan, Vol. 38, 679–695. (1986)

15. General theory of bounds of modes.

[15.1] Modes and moments of unimodal distributions. Ann. Inst. Stat. Math.,

Vol. 39, 407–415. (1987)

16. Unimodality of functionals of birth-and-death processes.

[16.1] Unimodality and bounds of modes for distributions of generalized sojourn

times. Stochastic Methods in Biology, Lect. Notes in Biomath., Springer, No. 70,

210–221. (1987)

[16.2] Some classes generated by exponential distributions. Probability Theory

and Math. Statistics, Fifth Japan–USSR Symp., Lect. Notes in Math., Springer,

No. 1299, 454–463. (1988)

[16.3] On zeros of a system of polynomials and application to sojourn time dis-

tributions of birth-and-death processes. Trans. Amer. Math. Soc., Vol. 309, 375–390.

(1988)
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17. Distributions of class L and selfsimilar additive processes.

[17.1] Distributions of class L and self-similar processes with independent in-

crements. White Noise Analysis. Mathematics and Applications, World Scientific,

360–373. (1990)

[17.2] Self-similar processes with independent increments. Prob. Th. Rel. Fields,

Vol. 89, 285–300. (1991)

18. Recurrence criteria for Ornstein–Uhlenbeck type processes.

[18.1] (With M.Yamazato) Remarks on recurrence criteria for processes of

Ornstein–Uhlenbeck type. Functional Analysis and Related Topics, 1991, Lect. Notes

in Math., Springer, No. 1540, 329–340. (1993)

[18.2] (With Toshiro Watanabe and M.Yamazato) Recurrence conditions for

multidimensional processes of Ornstein–Uhlenbeck type. J. Math. Soc. Japan, Vol. 46,

245–265. (1994)

[18.3] (With Toshiro Watanabe, K.Yamamuro, and M.Yamazato) Multidimen-

sional process of Ornstein–Uhlenbeck type with nondiagonalizable matrix in linear

drift terms. Nagoya Math. J., {Vol. 141, 45–78. (1996)}

19. General theory of convolutions of unimodal distributions.

[19.1] Convolution of unimodal distributions can produce any number of modes.

Ann. Prob., Vol. 21, 1543–1549. (1993)

20. Time evolution of distributions of Lévy processes.

[20.1] On unimodality and mode behavior of Lévy processes. Probability Theory

and Mathematical Statistics, Proc. Sixth USSR–Japan Symp., World Scientific, 292–

305. (1992)

[20.2] Time evolution of distributions of Lévy processes from continuous singular

to absolutely continuous. Research Bulletin, College of General Education, Nagoya

Univ., Ser. B, No. 38, 1–11. (1994)

[20.3] Multimodal convolutions of unimodal infinitely divisible distributions. Teor.

Veroyatn. Primenen., {Tom 39, 403–415 (Theory Probab. Appl., Vol. 39, 336–347).

(1994)}
[20.4] Time evolution in distributions of Lévy processes. Southeast Asian Bulletin

of Mathematics, {Vol. 19, No. 2, 17–26. (1995)}
*[20.5] Problems on unimodality of distributions of Lévy processes (in Japanese).

Abstracts of talks, Math. Soc. Japan, Section on probability and statistics (October

1992), 57–70.
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21. Others.

[21.1] Subordination depending on a parameter. Probability Theory and Mathe-

matical Statistics, Proc. Fifth Vilnius Conf., Vol. 2, VSP/Mokslas, 372–382. (1990)

[21.2] (With M.Fukushima and S.Taniguchi) On the closable parts of pre-Dirichlet

forms and the fine supports of underlying measures. Osaka J. Math., Vol. 28, 517–535.

(1991)

*[21.3] Infinitely divisible distributions (in Japanese). Seminar on Probability,

Vol. 52. (1981)

*[21.4] Properties of distribution of passage time (in Japanese). Stochastic Models

in Population genetics, Reports of Symposium, 84–96. (1985)

*[21.5] Lévy Processes (in Japanese). Kinokuniya. (1990)

*[21.6] Poisson transform (from continuous distributions to discrete distributions)

(in Japanese). Topics in distribution theory, Abstracts, 13–24. (1992)
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