Corrections and Changes of "Lévy Processes and Infinitely Divisible Distributions" ## Ken-iti Sato Page a, line b from the top and page a, line c from the bottom are denoted by a^b and a_c , respectively. Page a, reference d is denoted by a [d]. "Replace ABC by XYZ" is denoted by " $ABC \longrightarrow XYZ$ ". - xi_{14} : Insert the following at the top of the line: $A^c = \mathbb{R}^d \setminus A$, - xii^8 : Insert the following at the end of the line: See p. 3 for the meaning of $\{X_t\} \stackrel{\mathrm{d}}{=} \{Y_t\}$. - xii_8 : that is \longrightarrow that is, - xii₈: Insert the following at the end of the line: (However, the prime is sometimes used not in this way. For example, together with a stochastic process $\{X_t\}$ taking values in \mathbb{R}^d , we use $\{X_t'\}$ for another stochastic process taking values in \mathbb{R}^d ; X_t' is not the transpose of X_t .) - 5^6 : special case of \longrightarrow special case of a discrete version of - 7_4 : bounded \longrightarrow finite - 11^{17} : $e \longrightarrow e$ - 13₇: It is exponential if c = 1. \longrightarrow Sometimes c is called shape parameter and α scale parameter. If c = 1, then μ is exponential. - 15^6 : mean \longrightarrow parameter - $24^8: P \longrightarrow E$ - \bullet 464 : Replace the period (.) at the end of the line by a semicolon (;) - \bullet 461 : Delete the semicolon (;) at the end of the line. - 47^1 : Add the following at the top of the line: (Weibull with $\alpha > 1$ is not infinitely divisible, see Exercise 29.10); - 47^{15} and 47^{16} : $dx \longrightarrow dx$ (each two places) - $49_{15}: (a_{nk}) \longrightarrow (a_{nk})_j$ - $52_8: A_{s_n} \longrightarrow A_{s_n} z$ - $52_5: A_{s_n} \longrightarrow A_{s_n} z$ - 53^3 : Lévy \longrightarrow Lévy–Khintchine - \bullet Insert the following between 66_2 and 66_1 : - (3) $\lim_{l\to\infty} \sup_{\mu\in M} \int_{|x|>l} \nu_{\mu}(\mathrm{d}x) = 0 ;$ - $66_1:$ (3) \longrightarrow (4) - 68_{22} : [201, 204] \longrightarrow [199, 201, 204] - 68_{20} : method. \longrightarrow method. Itô [204] also explains this method. - 70_{14} : distribution with \longrightarrow distribution μ with - 70_{13} : stable. The semi-stability \longrightarrow stable, as - $72_6: Z \longrightarrow W$ - 77_{15} : |x| = 1, the unit sphere, and let, for b > 1, \longrightarrow |x| = 1. It is the unit sphere (if $d \ge 2$) or $\{1, -1\}$ (if d = 1). For b > 1, let - 79_{16} : Make clear the printing of the second "<" in " $0 < \alpha < 2$ " - 84_3 : of (14.18) gives \longrightarrow and (14.18) give - 89⁸: Insert the following above this line: Notice that $\sin \pi \rho \alpha > 0$ if $\alpha \neq 0$ and $\beta \neq -1$. - 90^5 : $\left(\frac{c}{c_1} i\tau \frac{c}{c_1} \operatorname{sgn} z\right) \longrightarrow \left(\frac{c}{c_1} i\tau \frac{1}{c_1} \operatorname{sgn} z\right)$ - 90₁: Add the following at the end of the line: (Remarks concerning the definition will be given in Proposition 15.5 and Exercise 18.14.) - 95¹⁴: unit sphere. \longrightarrow unit sphere (if $d \ge 2$) or the two-point set $\{1, -1\}$ (if d = 1). - 95₁₃: Add the following at the top of the line: Since $\int_0^\infty 1_B(r\xi)k_\xi(r)\frac{\mathrm{d}r}{r} = \int_0^\infty 1_B(r\xi)k_\xi(r+)\frac{\mathrm{d}r}{r}$, it is measurable in ξ . - 97^7 : ν [2 places] $\longrightarrow \mu$ - 97^{19} : $c(\xi) > 0 \longrightarrow c(\xi) \text{ with } 0 < \xi < \infty$ - $97^{22}: k_{\xi}^{\sharp}(\cdot) = c(\xi)^{-1}k_{\xi}(\cdot) \longrightarrow k_{\xi}^{\sharp}(r)\mathrm{d}r = c(\xi)^{-1}k_{\xi}(r)\mathrm{d}r$ - $97_9: \qquad \nu(\mathrm{d}\xi) \longrightarrow \qquad \nu(\mathrm{d}x)$ - 97₅: Add the following at the end of the line: See Lemma 59.3 for another uniqueness condition. - 97_3 : 1 and \longrightarrow 1, - 97₃ : of ξ . \longrightarrow of ξ , and $k_{\xi}(r)$ is right-continuous in r > 0. - 97₁: Add the following at the end of the line: Recall that a decreasing function has a countable number of jumps at most and hence coincides with its right-continuous modification except at a countable number of points. - 99_3 : selfsimilar process \longrightarrow selfsimilar additive process - 105_5 : $e^{i\langle a_j z, Z_{u_j} Z_{u_{j-1}}\rangle} \longrightarrow E\left[e^{i\langle a_j z, Z_{u_j} Z_{u_{j-1}}\rangle}\right]$ - 108¹¹: Add the following at the end of the line: This process is sometimes called an *Ornstein-Uhlenbeck process driven by a Lévy process*. - 109^9 : unit sphere \longrightarrow unit sphere (if $d \ge 2$) or $\{1, -1\}$ (if d = 1), - 109^{11} : Add the following at the top of the line: Sometimes we say that ρ has finite log-moment if (17.11) is satisfied. - $115_1: c \neq 0 \longrightarrow c = 0$ - $116_{14}: dx \longrightarrow dx$ - 116_{13} : (2 places) $dx \longrightarrow dx$ - $116_{12} 116_{10}$: (By scaling and translation we can make a = c = 1. The case a = c = 1 appears as the distribution of $Y = \log X$, where X has Γ -distribution with parameter b, 1.) - \longrightarrow (If X has Γ -distribution with parameters $a^{-1}b$, c, then $a^{-1}\log X$ has distribution $f(x)\mathrm{d}x$.) - 119^{10} : simultaneously subtracted means \longrightarrow means simultaneously subtracted - 120^{13} : (1.6) \longrightarrow 1.6 - $120_{14}: d(s,x) \longrightarrow d(s,x)$ - \bullet 121_{18} : Move "Also" to the top of the line. - 125_{15} : $\varepsilon \downarrow \infty$ \longrightarrow $\varepsilon \downarrow 0$ - 127_4 : is $0 \longrightarrow \text{tends to } 0$ - 146^{17} : $\dim \mu \longrightarrow \dim_{\mathbb{R}} \mu$ - 152¹²: Insert a period (.) between $[t\gamma_0, \infty)$ and If - 157¹⁰: Replace this line by the following: $\{X_t\}$ is degenerate. If $\{X_t\}$ is degenerate, then it is possible that $\{X_t\}$ is genuinely d-dimensional. - 160_6 – 160_5 : Lévy representation → Lévy–Khintchine representation - 161_7 : $g(x+y) \le abe^{c|x|}g(x+y)$ by Lemma 25.5, \longrightarrow g(x+y) - $163^9 163^{10}$: although it has support \mathbb{R} for every t > 0 (Theorem 24.10(i)). \longrightarrow (it has support \mathbb{R} for every t > 0 as is shown in Theorem 24.10(i)). - 163_9 : Embrecht \longrightarrow Embrechts - 164^6 : $[X_1 \le x, \dots, X_{j-1} \le x, X_j > x]$ $\longrightarrow [Z_1 \le x, \dots, Z_{j-1} \le x, Z_j > x]$ - 164^8 : $\{X_t\}$ be \longrightarrow $\{X_t\}$ is - $164_{18}: L(x) \neq 0 \longrightarrow L(x)$ is positive, measurable, - 164_5 : Embrecht \longrightarrow Embrechts - $166^9: P_{X_t} \longrightarrow P_{X_1(t)}$ - $178_8: x_1 \cdots + x_d \longrightarrow x_1 + \cdots + x_d$ - 181_{15} : Add the following at the end of the line: See Exercise 29.13 for an extension to non-infinitely-divisible case. - 182^5 : $c=1 \longrightarrow c_1=1$ - $190_5: |\widetilde{\mu}(z)| \longrightarrow |\widehat{\mu}(z)|$ - 191_{15} : z > b \longrightarrow z > 1/b - 196 : Replace the four lines 196_6-196_3 by the following: to $[0,1] \cup \{\infty\}$, Rubin [384] describes the construction of a Lévy process $\{X_t\}$ on \mathbb{R} such that $\dim_{\mathbb{R}} P_{X_t} = f(t)$. Here, for any singular distribution μ , $\dim_{\mathbb{R}} \mu$ is equal to the Hausdorff dimension $\dim_{\mathbb{H}} \mu$ defined as the infimum of the Hausdorff dimensions of all Borel sets B with $\mu(B) = 1$. If μ is not singular, then $\dim_{\mathbb{R}} \mu$ is defined to be ∞ . - $199^1 199^2$: We have - \longrightarrow Noting that $\{X_2(t)\}$ is a compound Poisson process, we have • $202^3: Y_{Z_2(t)} \longrightarrow Y'_{Z_2(t)}$ • 212_{10} : given \longrightarrow made explicit • 217_{16} : In this way the logarithm of an operator is defined. \longrightarrow This is a way to define the logarithm of an operator. • 220₄: satisfying (33.3) \longrightarrow satisfying (33.3) and $-\infty < \varphi(x) < \infty$ • 221^{12} : Delete "positive". • $230_{17}: P^{\sharp} \longrightarrow E^{P^{\sharp}}$ • 236_5 : Insert "Newman [324] and" before "Brockett". • 236₄ : Delete " $A = A^{\sharp}$ and". • 240^{1} : Insert "Fix a > 0." before the first sentence of LEMMA 35.5. • 240^3 : $a > 0 \longrightarrow \varepsilon > 0$ • 241^{18} : if \longrightarrow If • 250¹⁶: Add the following at the end of line: This remark continues to Remark 37.13. • 253_2 : $\leq 0 \longrightarrow \geq 0$ • 256: The last two lines should be as follows: $$K^{+} = \int_{(2,\infty)} x \left(\int_{-x}^{-1} \nu(-\infty, y) dy \right)^{-1} \nu(dx),$$ $$K^{-} = \int_{(-\infty, -2)} |x| \left(\int_{1}^{|x|} \nu(y, \infty) dy \right)^{-1} \nu(dx).$$ • 257: Insert the following between 257⁴ and 257⁵: See [115], p. 373, where these are proved by the reduction to the results on random walks. $\bullet~257^5$: Begin a new paragraph. • 257⁶: Add the following at the end of the line: Indeed this is obvious if 'are respectively equivalent to' is replaced by 'respectively imply'; then note that (1), (2), and (3) are exhaustive. We now have a criterion of drifting to ∞ , drifting to $-\infty$, and oscillating for Lévy processes \bullet 270 : Make the vertical space between 270^{10} and 270^{11} shorter. on \mathbb{R} in terms of Lévy measure and parameter γ . • $276_6: \mathcal{F}_{t-s} \longrightarrow \mathcal{F}_{(t-s)\vee 0}$ • $276_2:$ \bigcup_k \longrightarrow \bigcap_k - 281^9 : $t \ge 0$ \longrightarrow $s \ge 0$ - 281^9 : $\Omega' \longrightarrow \Omega' \cap \{X_0 = 0\}$ - $284^{14}: X_t \longrightarrow X_T$ • $$285^{17}$$: $$\int_0^\infty e^{-t-rt/q} P_{t/q} f dt \longrightarrow \int_0^\infty e^{-t-qt/r} P_{t/r} f dt$$ - $\bullet \ 287^{10}: \qquad X_t \qquad \longrightarrow \qquad X_s$ - 288_5 : $f_n(x) \longrightarrow f_n(y)$ - $301_7: C(B) \longrightarrow C^q(B)$ - $305_{12}:$ (7) \longrightarrow (1) - $305_{11}:$ (8) \longrightarrow (2) - $305_{10}:$ (9) \longrightarrow (3) - $305_7:$ (10) \longrightarrow (4) - 307^{11} : Proof of \longrightarrow Proof of - 313^{16} : Move "the set" to the top of the line. - $327_{16}:$ $1_{\mathbb{R}\setminus\{0\}}$ \longrightarrow $1_{\mathbb{R}^d\setminus\{0\}}$ - $328^{14}: H(x,t,\omega) \longrightarrow H(y,t,\omega)$ - 328^{16} : $H(x,t) \longrightarrow H(y,t)$ - 337_5 : right-hand sides \longrightarrow left-hand sides - \bullet 338² : Replace the period (.) at the end of the line by a comma (,) - $343^8: \qquad \nu(\mathrm{d}x) \longrightarrow \qquad x\nu(\mathrm{d}x)$ - $350_5: > 0 \longrightarrow \geq 0$ - $358^9:$ [114] \longrightarrow [113] - 359^3 : $e \longrightarrow e$ - 359_{14} : Proposition 47.14. \longrightarrow Proposition 47.14 for $t \to \infty$ instead of $t \downarrow 0$. - $368_1:$ [113] \longrightarrow [114] - $377_9: \int_t^\infty \longrightarrow \int_1^\infty$ - 378^{17} : symmetric \longrightarrow symmetric with A = 0 - 381^{13} : $\log \log (1/s)$ \longrightarrow $\log \log (1/u)$ - 381^{14} : $0 < s \longrightarrow 0 < u$ • 384^{12} : The displayed equation should be as follows: $$E[e^{-uL^{-1}(1)-vM(L^{-1}(1))}] = \exp\left[-c\exp\left[\int_0^\infty t^{-1}dt\int_{(0,\infty)}(e^{-t}-e^{-ut-vx})\mu^t(dx)\right]\right]$$ - 388^9 : Theorem 51.3 shows that μ_n is infinitely divisible. Hence, - \longrightarrow By Theorem 51.3 μ_n is infinitely divisible and - $388_{16}: (0,\infty) \longrightarrow [0,\infty)$ - $388_{14}: (0,\infty) \longrightarrow [0,\infty)$ - 388_{10} : Add the following at the end of the line: Note that $\rho(\{0\}) = \lim_{x \to \infty} f(x)$. - 389^{15} : the Bondesson class - → the Bondesson class or the Goldie–Steutel–Bondesson class, because it is related to Goldie [151], Steutel [441], and Bondesson [46] - 393₄: Make clear the printing of "e" in "mixture" - 404^{15} : $Ke^{c-1} \longrightarrow Kx^{c-1}$ - 424⁴: Replace the period (.) by a comma (,) - 424⁵ : Delete this line. - 425_{13} : Add the following at the end of the line: (Any μ in T is called generalized gamma convolution or GGC.) - 429^3 : (3a) \longrightarrow (4a) - 429^4 : (1), (2), and (3) \longrightarrow (1), (2), (3), and (4) - 429^4 : (1), (2), and (3a) \longrightarrow (1), (2), (3), and (4a) - 430_7 : Add the following at the end of line: See E 18.18 for another example. - $433^{13} 433^{14}$: in the case a = b = c = 1 follows also from E 29.16. See also Theorem 2 of [419]. - \longrightarrow is evident from the expression of the Lévy measure; see Theorem 2 of [419] for another proof. It also follows from E 29.16 if $a^{-1}b=1$ and c=1. - $434^1: X_n \longrightarrow S_n$ - $\bullet \ 437^{17}: \qquad x_k^{-1} \qquad \longrightarrow \qquad p_k \, x_k^{-1}$ - $437^{17}: |x_{-l}|^{-1} \longrightarrow p_l |x_{-l}|^{-1}$ - 439^{13} : Use E 34.3 \longrightarrow Use the result of [337], p. 159, - $\bullet \ 444^{19}: \qquad 406\text{--}407 \qquad \longrightarrow \qquad 425\text{--}426$ - 456 [109]: Embrecht \longrightarrow Embrechts - 456 [110]: Embrecht \longrightarrow Embrechts - 456^{25} – 456^{28} should be as follows: - [113] Erdős, P. (1942) On the law of the iterated logarithm, Ann. Math. 43, 419–436. 358 - [114] Erdős, P. and Révész, P. (1997) On the radius of the largest ball left empty by a Wiener process, Stud. Sci. Math. Hungar. 33, 117–125. 368 - $\bullet \ 459 \ [175]: \qquad (1973) \qquad \longrightarrow \qquad (1972)$ - 460 [202]: Replace the two lines by the following: [202] Itô, K. (2006) Essentials of Stochastic Processes, Amer. Math. Soc., Providence, RI. [Japanese original 1957] 68,236 - 460 [204]: Replace the two lines by the following: [204] Itô, K. (2004) Stochastic Processes. Lectures Given at Aarhus University (ed. O. Barndorff-Nielsen and K. Sato), Springer, Berlin. [Original lecture notes 1969] 30,682,1962 - $464_5, 464_2, 465^2, 465^6, 465^{10}$: Gauthie \longrightarrow Gauthier - $\bullet \ 465 \ [300]: \qquad (1998) \qquad \longrightarrow \qquad (1999)$ - 465 [300]: Probab., to appear. \longrightarrow Probab. 12, 347–373. - 466 [322]: reversal \longrightarrow reversions - $466_1: 236_2 \longrightarrow 236_3$ - 467 [333]: Replace the two lines by the following: [333] Petrov, V. V. (1975) Sums of Independent Random Variables, Springer, Berlin. [Russian original 1972] 196 - 467 [336]: Some stable \longrightarrow Semi stable - $467 [337]: 234 \longrightarrow 234,439$ - 469^{27} : see also [113] \longrightarrow see also [114] - $\bullet \ 469 \ [376]: \qquad (1994) \longrightarrow \qquad (1999)$ - 469 [376]: 2nd ed. \longrightarrow 3rd ed. - $470 [397]: 118, \longrightarrow 118$ - $470 [398]: Probability \longrightarrow Probability$ - 471 [408]: to appear. \longrightarrow 129-145. ``` • 473 [440]: Notes \longrightarrow Note ``` • $$474 [462]$$: waks \longrightarrow walks - 474 [469]: stationary \longrightarrow stationary - 474₄: Delete the period (.) at the end of the line. $$\bullet 476 [496]: \qquad (1998) \longrightarrow \qquad (2000)$$ - 476 [496] : Preprint. - \longrightarrow Prob. Theory Related Fields 117, 387–405. - 476 [497] : Japan. J. Math., to appear. - \longrightarrow Japan. J. Math. 25, 227–256. - $\bullet 477 [516]: \qquad (1998) \longrightarrow \qquad (2000)$ - 477 [516] : J. Math. Soc. Japan, to appear. - \longrightarrow J. Math. Soc. Japan **52**, 343–362. - $478 [534]: 653-664 \longrightarrow 653-662$ - Erase the irregular dots that exist in the following places: 17^3 , 27_5 , 39_3 , 51_7 , 59_6 , 68 (foot margin), 99_6 , 123_4 , 131_7 , 146^5 , 147_7 , 148^3 , 155_8 , 187_7 , 195_8 , 199^{15} , 203_7 , 218^{17} , 220^{14} , 231_2 , 231_1 , 248_{13} , 248_{12} , 260 (between 260_9 and 260_8), 261 (foot margin), 263_8 (two dots), 292^{11} , 314^{14} , 323 (between 323_6 and 323_5), 326_1 , 327 (between 327^1 and 327^2), 331_9 (below "l" of "total"), 342^4 (between lines 342^3 and 342^5), 342^6 , 347 (between 347_4 and 347_3), 350_{14} , 363_7 , 379_7 , 382 (a blur in foot margin), 386^7 , 395_7 , 398^2 , 403_8 , 404 (between 404_{13} and 404_{12}), 408^6 (above "af"), 419_7 , 423 (foot margin), 437 (between 437^{12} and 437^{13}), 443 (between 443_{10} and 443_9), 457 [134], 482_{21} (left column) (left margin). (April 23, 2013)