Corrections and Changes of "Lévy Processes and Infinitely Divisible Distributions"

Ken-iti Sato

Page a, line b from the top and page a, line c from the bottom are denoted by a^b and a_c , respectively. Page a, reference d is denoted by a [d]. "Replace ABC by XYZ" is denoted by " $ABC \longrightarrow XYZ$ ".

- xi_{14} : Insert the following at the top of the line: $A^c = \mathbb{R}^d \setminus A$,
- xii^8 : Insert the following at the end of the line: See p. 3 for the meaning of $\{X_t\} \stackrel{\mathrm{d}}{=} \{Y_t\}$.
- xii_8 : that is \longrightarrow that is,
- xii₈: Insert the following at the end of the line: (However, the prime is sometimes used not in this way. For example, together with a stochastic process $\{X_t\}$ taking values in \mathbb{R}^d , we use $\{X_t'\}$ for another stochastic process taking values in \mathbb{R}^d ; X_t' is not the transpose of X_t .)
- 5^6 : special case of \longrightarrow special case of a discrete version of
- 7_4 : bounded \longrightarrow finite
- 11^{17} : $e \longrightarrow e$
- 13₇: It is exponential if c = 1. \longrightarrow Sometimes c is called shape parameter and α scale parameter. If c = 1, then μ is exponential.
- 15^6 : mean \longrightarrow parameter
- $24^8: P \longrightarrow E$
- \bullet 464 : Replace the period (.) at the end of the line by a semicolon (;)
- \bullet 461 : Delete the semicolon (;) at the end of the line.
- 47^1 : Add the following at the top of the line: (Weibull with $\alpha > 1$ is not infinitely divisible, see Exercise 29.10);
- 47^{15} and 47^{16} : $dx \longrightarrow dx$ (each two places)
- $49_{15}: (a_{nk}) \longrightarrow (a_{nk})_j$
- $52_8: A_{s_n} \longrightarrow A_{s_n} z$
- $52_5: A_{s_n} \longrightarrow A_{s_n} z$
- 53^3 : Lévy \longrightarrow Lévy–Khintchine

- \bullet Insert the following between 66_2 and 66_1 :
 - (3) $\lim_{l\to\infty} \sup_{\mu\in M} \int_{|x|>l} \nu_{\mu}(\mathrm{d}x) = 0 ;$
- $66_1:$ (3) \longrightarrow (4)
- 68_{22} : [201, 204] \longrightarrow [199, 201, 204]
- 68_{20} : method. \longrightarrow method. Itô [204] also explains this method.
- 70_{14} : distribution with \longrightarrow distribution μ with
- 70_{13} : stable. The semi-stability \longrightarrow stable, as
- $72_6: Z \longrightarrow W$
- 77_{15} : |x| = 1, the unit sphere, and let, for b > 1, \longrightarrow |x| = 1. It is the unit sphere (if $d \ge 2$) or $\{1, -1\}$ (if d = 1). For b > 1, let
- 79_{16} : Make clear the printing of the second "<" in " $0 < \alpha < 2$ "
- 84_3 : of (14.18) gives \longrightarrow and (14.18) give
- 89⁸: Insert the following above this line: Notice that $\sin \pi \rho \alpha > 0$ if $\alpha \neq 0$ and $\beta \neq -1$.
- 90^5 : $\left(\frac{c}{c_1} i\tau \frac{c}{c_1} \operatorname{sgn} z\right) \longrightarrow \left(\frac{c}{c_1} i\tau \frac{1}{c_1} \operatorname{sgn} z\right)$
- 90₁: Add the following at the end of the line:
 (Remarks concerning the definition will be given in Proposition 15.5 and Exercise 18.14.)
- 95¹⁴: unit sphere. \longrightarrow unit sphere (if $d \ge 2$) or the two-point set $\{1, -1\}$ (if d = 1).
- 95₁₃: Add the following at the top of the line: Since $\int_0^\infty 1_B(r\xi)k_\xi(r)\frac{\mathrm{d}r}{r} = \int_0^\infty 1_B(r\xi)k_\xi(r+)\frac{\mathrm{d}r}{r}$, it is measurable in ξ .
- 97^7 : ν [2 places] $\longrightarrow \mu$
- 97^{19} : $c(\xi) > 0 \longrightarrow c(\xi) \text{ with } 0 < \xi < \infty$
- $97^{22}: k_{\xi}^{\sharp}(\cdot) = c(\xi)^{-1}k_{\xi}(\cdot) \longrightarrow k_{\xi}^{\sharp}(r)\mathrm{d}r = c(\xi)^{-1}k_{\xi}(r)\mathrm{d}r$
- $97_9: \qquad \nu(\mathrm{d}\xi) \longrightarrow \qquad \nu(\mathrm{d}x)$
- 97₅: Add the following at the end of the line: See Lemma 59.3 for another uniqueness condition.
- 97_3 : 1 and \longrightarrow 1,
- 97₃ : of ξ . \longrightarrow of ξ , and $k_{\xi}(r)$ is right-continuous in r > 0.

- 97₁: Add the following at the end of the line:
 Recall that a decreasing function has a countable number of jumps at most and hence coincides with its right-continuous modification except at a countable number of points.
- 99_3 : selfsimilar process \longrightarrow selfsimilar additive process
- 105_5 : $e^{i\langle a_j z, Z_{u_j} Z_{u_{j-1}}\rangle} \longrightarrow E\left[e^{i\langle a_j z, Z_{u_j} Z_{u_{j-1}}\rangle}\right]$
- 108¹¹: Add the following at the end of the line:

 This process is sometimes called an *Ornstein-Uhlenbeck process driven by a Lévy process*.
- 109^9 : unit sphere \longrightarrow unit sphere (if $d \ge 2$) or $\{1, -1\}$ (if d = 1),
- 109^{11} : Add the following at the top of the line: Sometimes we say that ρ has finite log-moment if (17.11) is satisfied.
- $115_1: c \neq 0 \longrightarrow c = 0$
- $116_{14}: dx \longrightarrow dx$
- 116_{13} : (2 places) $dx \longrightarrow dx$
- $116_{12} 116_{10}$: (By scaling and translation we can make a = c = 1. The case a = c = 1 appears as the distribution of $Y = \log X$, where X has Γ -distribution with parameter b, 1.)
 - \longrightarrow (If X has Γ -distribution with parameters $a^{-1}b$, c, then $a^{-1}\log X$ has distribution $f(x)\mathrm{d}x$.)
- 119^{10} : simultaneously subtracted means \longrightarrow means simultaneously subtracted
- 120^{13} : (1.6) \longrightarrow 1.6
- $120_{14}: d(s,x) \longrightarrow d(s,x)$
- \bullet 121_{18} : Move "Also" to the top of the line.
- 125_{15} : $\varepsilon \downarrow \infty$ \longrightarrow $\varepsilon \downarrow 0$
- 127_4 : is $0 \longrightarrow \text{tends to } 0$
- 146^{17} : $\dim \mu \longrightarrow \dim_{\mathbb{R}} \mu$
- 152¹²: Insert a period (.) between $[t\gamma_0, \infty)$ and If

- 157¹⁰: Replace this line by the following: $\{X_t\}$ is degenerate. If $\{X_t\}$ is degenerate, then it is possible that $\{X_t\}$ is genuinely d-dimensional.
- 160_6 – 160_5 : Lévy representation

→ Lévy–Khintchine representation

- 161_7 : $g(x+y) \le abe^{c|x|}g(x+y)$ by Lemma 25.5, \longrightarrow g(x+y)
- $163^9 163^{10}$: although it has support \mathbb{R} for every t > 0 (Theorem 24.10(i)).

 \longrightarrow (it has support \mathbb{R} for every t > 0 as is shown in Theorem 24.10(i)).

- 163_9 : Embrecht \longrightarrow Embrechts
- 164^6 : $[X_1 \le x, \dots, X_{j-1} \le x, X_j > x]$ $\longrightarrow [Z_1 \le x, \dots, Z_{j-1} \le x, Z_j > x]$
- 164^8 : $\{X_t\}$ be \longrightarrow $\{X_t\}$ is
- $164_{18}: L(x) \neq 0 \longrightarrow L(x)$ is positive, measurable,
- 164_5 : Embrecht \longrightarrow Embrechts
- $166^9: P_{X_t} \longrightarrow P_{X_1(t)}$
- $178_8: x_1 \cdots + x_d \longrightarrow x_1 + \cdots + x_d$
- 181_{15} : Add the following at the end of the line: See Exercise 29.13 for an extension to non-infinitely-divisible case.
- 182^5 : $c=1 \longrightarrow c_1=1$
- $190_5: |\widetilde{\mu}(z)| \longrightarrow |\widehat{\mu}(z)|$
- 191_{15} : z > b \longrightarrow z > 1/b
- 196 : Replace the four lines 196_6-196_3 by the following: to $[0,1] \cup \{\infty\}$, Rubin [384] describes the construction of a Lévy process $\{X_t\}$ on \mathbb{R} such that $\dim_{\mathbb{R}} P_{X_t} = f(t)$. Here, for any singular distribution μ , $\dim_{\mathbb{R}} \mu$ is equal to the Hausdorff dimension $\dim_{\mathbb{H}} \mu$ defined as the infimum of the Hausdorff dimensions of all Borel sets B with $\mu(B) = 1$. If μ is not singular, then $\dim_{\mathbb{R}} \mu$ is defined to be ∞ .
- $199^1 199^2$: We have
 - \longrightarrow Noting that $\{X_2(t)\}$ is a compound Poisson process, we have

• $202^3: Y_{Z_2(t)} \longrightarrow Y'_{Z_2(t)}$

• 212_{10} : given \longrightarrow made explicit

• 217_{16} : In this way the logarithm of an operator is defined.

 \longrightarrow This is a way to define the logarithm of an operator.

• 220₄: satisfying (33.3) \longrightarrow satisfying (33.3) and $-\infty < \varphi(x) < \infty$

• 221^{12} : Delete "positive".

• $230_{17}: P^{\sharp} \longrightarrow E^{P^{\sharp}}$

• 236_5 : Insert "Newman [324] and" before "Brockett".

• 236₄ : Delete " $A = A^{\sharp}$ and".

• 240^{1} : Insert "Fix a > 0." before the first sentence of LEMMA 35.5.

• 240^3 : $a > 0 \longrightarrow \varepsilon > 0$

• 241^{18} : if \longrightarrow If

• 250¹⁶: Add the following at the end of line: This remark continues to Remark 37.13.

• 253_2 : $\leq 0 \longrightarrow \geq 0$

• 256: The last two lines should be as follows:

$$K^{+} = \int_{(2,\infty)} x \left(\int_{-x}^{-1} \nu(-\infty, y) dy \right)^{-1} \nu(dx),$$

$$K^{-} = \int_{(-\infty, -2)} |x| \left(\int_{1}^{|x|} \nu(y, \infty) dy \right)^{-1} \nu(dx).$$

• 257: Insert the following between 257⁴ and 257⁵: See [115], p. 373, where these are proved by the reduction to the results on random walks.

 $\bullet~257^5$: Begin a new paragraph.

• 257⁶: Add the following at the end of the line: Indeed this is obvious if 'are respectively equivalent to' is replaced by 'respectively imply'; then note that (1), (2), and (3) are exhaustive. We now have a criterion of drifting to ∞ , drifting to $-\infty$, and oscillating for Lévy processes

 \bullet 270 : Make the vertical space between 270^{10} and 270^{11} shorter.

on \mathbb{R} in terms of Lévy measure and parameter γ .

• $276_6: \mathcal{F}_{t-s} \longrightarrow \mathcal{F}_{(t-s)\vee 0}$

• $276_2:$ \bigcup_k \longrightarrow \bigcap_k

- 281^9 : $t \ge 0$ \longrightarrow $s \ge 0$
- 281^9 : $\Omega' \longrightarrow \Omega' \cap \{X_0 = 0\}$
- $284^{14}: X_t \longrightarrow X_T$

•
$$285^{17}$$
:
$$\int_0^\infty e^{-t-rt/q} P_{t/q} f dt \longrightarrow \int_0^\infty e^{-t-qt/r} P_{t/r} f dt$$

- $\bullet \ 287^{10}: \qquad X_t \qquad \longrightarrow \qquad X_s$
- 288_5 : $f_n(x) \longrightarrow f_n(y)$
- $301_7: C(B) \longrightarrow C^q(B)$
- $305_{12}:$ (7) \longrightarrow (1)
- $305_{11}:$ (8) \longrightarrow (2)
- $305_{10}:$ (9) \longrightarrow (3)
- $305_7:$ (10) \longrightarrow (4)
- 307^{11} : Proof of \longrightarrow Proof of
- 313^{16} : Move "the set" to the top of the line.
- $327_{16}:$ $1_{\mathbb{R}\setminus\{0\}}$ \longrightarrow $1_{\mathbb{R}^d\setminus\{0\}}$
- $328^{14}: H(x,t,\omega) \longrightarrow H(y,t,\omega)$
- 328^{16} : $H(x,t) \longrightarrow H(y,t)$
- 337_5 : right-hand sides \longrightarrow left-hand sides
- \bullet 338² : Replace the period (.) at the end of the line by a comma (,)
- $343^8: \qquad \nu(\mathrm{d}x) \longrightarrow \qquad x\nu(\mathrm{d}x)$
- $350_5: > 0 \longrightarrow \geq 0$
- $358^9:$ [114] \longrightarrow [113]
- 359^3 : $e \longrightarrow e$
- 359_{14} : Proposition 47.14.

 \longrightarrow Proposition 47.14 for $t \to \infty$ instead of $t \downarrow 0$.

- $368_1:$ [113] \longrightarrow [114]
- $377_9: \int_t^\infty \longrightarrow \int_1^\infty$
- 378^{17} : symmetric \longrightarrow symmetric with A = 0
- 381^{13} : $\log \log (1/s)$ \longrightarrow $\log \log (1/u)$
- 381^{14} : $0 < s \longrightarrow 0 < u$

• 384^{12} : The displayed equation should be as follows:

$$E[e^{-uL^{-1}(1)-vM(L^{-1}(1))}] = \exp\left[-c\exp\left[\int_0^\infty t^{-1}dt\int_{(0,\infty)}(e^{-t}-e^{-ut-vx})\mu^t(dx)\right]\right]$$

- 388^9 : Theorem 51.3 shows that μ_n is infinitely divisible. Hence,
 - \longrightarrow By Theorem 51.3 μ_n is infinitely divisible and
- $388_{16}: (0,\infty) \longrightarrow [0,\infty)$
- $388_{14}: (0,\infty) \longrightarrow [0,\infty)$
- 388_{10} : Add the following at the end of the line: Note that $\rho(\{0\}) = \lim_{x \to \infty} f(x)$.
- 389^{15} : the Bondesson class
 - → the Bondesson class or the Goldie–Steutel–Bondesson class, because it is related to Goldie [151], Steutel [441], and Bondesson [46]
- 393₄: Make clear the printing of "e" in "mixture"
- 404^{15} : $Ke^{c-1} \longrightarrow Kx^{c-1}$
- 424⁴: Replace the period (.) by a comma (,)
- 424⁵ : Delete this line.
- 425_{13} : Add the following at the end of the line: (Any μ in T is called generalized gamma convolution or GGC.)
- 429^3 : (3a) \longrightarrow (4a)
- 429^4 : (1), (2), and (3) \longrightarrow (1), (2), (3), and (4)
- 429^4 : (1), (2), and (3a) \longrightarrow (1), (2), (3), and (4a)
- 430_7 : Add the following at the end of line: See E 18.18 for another example.
- $433^{13} 433^{14}$: in the case a = b = c = 1 follows also from E 29.16. See also Theorem 2 of [419].
 - \longrightarrow is evident from the expression of the Lévy measure; see Theorem 2 of [419] for another proof. It also follows from E 29.16 if $a^{-1}b=1$ and c=1.
- $434^1: X_n \longrightarrow S_n$
- $\bullet \ 437^{17}: \qquad x_k^{-1} \qquad \longrightarrow \qquad p_k \, x_k^{-1}$
- $437^{17}: |x_{-l}|^{-1} \longrightarrow p_l |x_{-l}|^{-1}$
- 439^{13} : Use E 34.3 \longrightarrow Use the result of [337], p. 159,
- $\bullet \ 444^{19}: \qquad 406\text{--}407 \qquad \longrightarrow \qquad 425\text{--}426$

- 456 [109]: Embrecht \longrightarrow Embrechts
- 456 [110]: Embrecht \longrightarrow Embrechts
- 456^{25} – 456^{28} should be as follows:
 - [113] Erdős, P. (1942) On the law of the iterated logarithm, Ann. Math. 43, 419–436. 358
 - [114] Erdős, P. and Révész, P. (1997) On the radius of the largest ball left empty by a Wiener process, Stud. Sci. Math. Hungar. 33, 117–125. 368
- $\bullet \ 459 \ [175]: \qquad (1973) \qquad \longrightarrow \qquad (1972)$
- 460 [202]: Replace the two lines by the following:
 [202] Itô, K. (2006) Essentials of Stochastic Processes, Amer. Math. Soc., Providence, RI. [Japanese original 1957] 68,236
- 460 [204]: Replace the two lines by the following:
 [204] Itô, K. (2004) Stochastic Processes. Lectures Given at Aarhus University (ed. O. Barndorff-Nielsen and K. Sato), Springer, Berlin. [Original lecture notes 1969] 30,682,1962
- $464_5, 464_2, 465^2, 465^6, 465^{10}$: Gauthie \longrightarrow Gauthier
- $\bullet \ 465 \ [300]: \qquad (1998) \qquad \longrightarrow \qquad (1999)$
- 465 [300]: Probab., to appear. \longrightarrow Probab. 12, 347–373.
- 466 [322]: reversal \longrightarrow reversions
- $466_1: 236_2 \longrightarrow 236_3$
- 467 [333]: Replace the two lines by the following:
 [333] Petrov, V. V. (1975) Sums of Independent Random Variables, Springer, Berlin.
 [Russian original 1972] 196
- 467 [336]: Some stable \longrightarrow Semi stable
- $467 [337]: 234 \longrightarrow 234,439$
- 469^{27} : see also [113] \longrightarrow see also [114]
- $\bullet \ 469 \ [376]: \qquad (1994) \longrightarrow \qquad (1999)$
- 469 [376]: 2nd ed. \longrightarrow 3rd ed.
- $470 [397]: 118, \longrightarrow 118$
- $470 [398]: Probability \longrightarrow Probability$
- 471 [408]: to appear. \longrightarrow 129-145.

```
• 473 [440]: Notes \longrightarrow Note
```

•
$$474 [462]$$
: waks \longrightarrow walks

- 474 [469]: stationary \longrightarrow stationary
- 474₄: Delete the period (.) at the end of the line.

$$\bullet 476 [496]: \qquad (1998) \longrightarrow \qquad (2000)$$

- 476 [496] : Preprint.
 - \longrightarrow Prob. Theory Related Fields 117, 387–405.
- 476 [497] : Japan. J. Math., to appear.
 - \longrightarrow Japan. J. Math. 25, 227–256.
- $\bullet 477 [516]: \qquad (1998) \longrightarrow \qquad (2000)$
- 477 [516] : J. Math. Soc. Japan, to appear.
 - \longrightarrow J. Math. Soc. Japan **52**, 343–362.
- $478 [534]: 653-664 \longrightarrow 653-662$
- Erase the irregular dots that exist in the following places:

 17^3 , 27_5 , 39_3 , 51_7 , 59_6 , 68 (foot margin), 99_6 , 123_4 , 131_7 , 146^5 , 147_7 , 148^3 , 155_8 , 187_7 , 195_8 , 199^{15} , 203_7 , 218^{17} , 220^{14} , 231_2 , 231_1 , 248_{13} , 248_{12} , 260 (between 260_9 and 260_8), 261 (foot margin), 263_8 (two dots), 292^{11} , 314^{14} , 323 (between 323_6 and 323_5), 326_1 , 327 (between 327^1 and 327^2), 331_9 (below "l" of "total"), 342^4 (between lines 342^3 and 342^5), 342^6 , 347 (between 347_4 and 347_3), 350_{14} , 363_7 , 379_7 , 382 (a blur in foot margin), 386^7 , 395_7 , 398^2 , 403_8 , 404 (between 404_{13} and 404_{12}), 408^6 (above "af"), 419_7 , 423 (foot margin), 437 (between 437^{12} and 437^{13}), 443 (between 443_{10} and 443_9), 457 [134], 482_{21} (left column) (left margin).

(April 23, 2013)