Memo January 28, 2008, from KS

This is continuation of the three memos [m1, m2, m3] on the limits of some nested classes induced by iteration of stochastic integral operators.

Correction. In Definition of $L_{\infty}^{(\alpha)\sharp}(\mathbb{R}^d)$ in page 1 of [m2], $\int_{\mathbb{R}^d} x\mu(dx) < \infty$ should be replaced by $\int_{\mathbb{R}^d} x\mu(dx) = 0$.

As in [m3] let $p(u) = u^{-2}e^{-u}$, and $g(t) = \int_t^\infty p(u)du$ for $0 < t \le \infty$. Let t = f(s), $0 \le s < \infty$, be defined by s = g(t), $0 < t \le \infty$. Define

(25)
$$\Phi_f(\mu) = \mathcal{L}\left(\int_0^{\infty-} f(s)dX_s^{(\mu)}\right).$$

Let

$$\mathfrak{R}_f^m = \mathfrak{R}_f^m(\mathbb{R}^d) = \Phi_f^m(\mathfrak{D}(\Phi_f^m)), \qquad m = 1, 2, \dots$$

Then (see p. 2 of [m1])

$$I(\mathbb{R}^d) \supset \mathfrak{R}_f^1 \supset \mathfrak{R}_f^2 \supset \cdots$$
.

We will give characterizations of $\bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$. We will use Theorem A in [m1] and Theorem B" in [m3], but we will not use Theorem C" in [m3].

We write the triplet of $\mu \in I(\mathbb{R}^d)$ as $(A^{\mu}, \nu^{\mu}, \gamma^{\mu})$ and the decomposition of the Lévy measure of $\mu \in L_{\infty}(\mathbb{R}^d)$ in Theorem A in [m1] as $\Gamma^{\mu}(d\beta)$ and $\lambda^{\mu}_{\beta}(d\xi)$.

Lemma 1. Let $\mu \in L_{\infty}(\mathbb{R}^d)$ with $\Gamma^{\mu}((0,1]) = 0$. Let

$$\Gamma^{0}(d\beta) = (\Gamma(\beta - 1))^{-1}\Gamma^{\mu}(d\beta),$$

$$\nu^{0}(B) = \int_{(1,2)} \Gamma^{0}(d\beta) \int_{S} \lambda_{\beta}^{\mu}(d\xi) \int_{0}^{\infty} 1_{B}(r\xi)r^{-\beta - 1}dr, \quad B \in \mathcal{B}(\mathbb{R}^{d}).$$

Then, $\int_1^a s^{-1} ds \int_{|x|>s} x \nu^0(dx)$ is convergent in \mathbb{R}^d as $a \uparrow \infty$ if and only if $\int_{1<|x|\leq a} x \nu^{\mu}(dx)$ is convergent in \mathbb{R}^d as $a \uparrow \infty$.

Proof. Notice that $\int_{|x|>1} |x| \nu^0(dx) < \infty$ by Lemma in [m2]. We have

$$\int_{1}^{a} s^{-1} ds \int_{|x|>s} x \nu^{0}(dx) = \int_{1}^{a} s^{-1} ds \int_{(1,2)} \Gamma^{0}(d\beta) \int_{S} \xi \lambda_{\beta}^{\mu}(d\xi) \int_{s}^{\infty} r r^{-\beta-1} dr$$

$$= \int_{(1,2)} (\Gamma(\beta-1))^{-1} (\beta-1)^{-1} \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda_{\beta}^{\mu}(d\xi) \int_{1}^{a} s^{-\beta} ds$$

$$= \int_{(1,2)} (\Gamma(\beta))^{-1} \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda_{\beta}^{\mu}(d\xi) \int_{1}^{a} s^{-\beta} ds = I_{1} \quad (\text{say})$$

and

$$\int_{1<|x|\leqslant a} x\nu^{\mu}(dx) = \int_{(1,2)} \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda^{\mu}_{\beta}(d\xi) \int_{1}^{a} r^{-\beta} dr = I_{2} \quad (\text{say}).$$

Hence

$$I_1 - I_2 = \int_{(1,2)} ((\Gamma(\beta))^{-1} - 1) \Gamma^{\mu}(d\beta) \int_S \xi \lambda_{\beta}^{\mu}(d\xi) \int_1^a r^{-\beta} dr.$$

Since

$$0 \leqslant ((\Gamma(\beta))^{-1} - 1) \int_1^a r^{-\beta} dr \leqslant \frac{1 - \Gamma(\beta)}{\Gamma(\beta)(\beta - 1)} \leqslant \text{const}$$

for $1 < \beta < 2$, $I_1 - I_2$ is convergent in \mathbb{R}^d as $a \uparrow \infty$. Hence the lemma follows. \square

Lemma 2. Let $\mu \in L_{\infty}(\mathbb{R}^d)$ with $\Gamma^{\mu}((0,1]) = 0$. Let ν^0 be as in Lemma 1. Then

(26)
$$\mu \in \Phi_f(L_\infty(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f))$$

if and only if

(27)
$$\begin{cases} \int_{\varepsilon}^{\infty} t e^{-t} dt \int_{\mathbb{R}^d} \frac{x|x|^2 \nu^0(dx)}{1+|tx|^2} \text{ is convergent in } \mathbb{R}^d \text{ as } \varepsilon \downarrow 0 \\ \text{and the limit equals } -\gamma^{\mu}. \end{cases}$$

Proof. Assume (27). Define $\mu^0 \in I(\mathbb{R}^d)$ by the triplet given by

$$A^{\mu_0} = A^{\mu}, \quad \nu^{\mu_0} = \nu^0, \quad \gamma^{\mu_0} = -\int_{\mathbb{R}^d} \frac{x|x|^2 \nu^{\mu_0}(dx)}{1 + |tx|^2}.$$

Notice that it follows from the definition of ν^{μ_0} that $\int_{|x|>1} |x| \nu^{\mu_0}(dx) < \infty$ and that $\mu_0 \in L_\infty(\mathbb{R}^d)$. Using Proposition 2.6 (ii) and (iv) of [S06], we see that $\mu_0 \in \mathfrak{D}(\Phi_f)$ and $\Phi_f(\mu_0) = \mu$, because

$$\begin{split} &\int_{0}^{\infty} f(s)^{2} ds = \int_{0}^{\infty} t^{2} t^{-2} e^{-t} dt = 1, \\ &\int_{0}^{\infty} ds \int_{\mathbb{R}^{d}} 1_{B}(f(s)x) \nu^{\mu_{0}}(dx) = \int_{0}^{\infty} t^{-2} e^{-t} dt \int_{\mathbb{R}^{d}} 1_{B}(tx) \nu^{\mu_{0}}(dx) \\ &= \int_{0}^{\infty} t^{-2} e^{-t} dt \int_{(1,2)} (\Gamma(\beta-1))^{-1} \Gamma^{\mu}(d\beta) \int_{S} \lambda^{\mu}_{\beta}(d\xi) \int_{0}^{\infty} 1_{B}(tr\xi) r^{-\beta-1} dr \\ &= \int_{0}^{\infty} t^{-2} e^{-t} dt \int_{(1,2)} (\Gamma(\beta-1))^{-1} \Gamma^{\mu}(d\beta) \int_{S} \lambda^{\mu}_{\beta}(d\xi) \int_{0}^{\infty} 1_{B}(s\xi) t^{\beta} s^{-\beta-1} ds \\ &= \int_{(1,2)} \Gamma^{\mu}(d\beta) \int_{S} \lambda^{\mu}_{\beta}(d\xi) \int_{0}^{\infty} 1_{B}(s\xi) s^{-\beta-1} ds = \nu^{\mu}(B), \\ &\lim_{t \to \infty} \int_{0}^{t} f(s) ds \left(\gamma^{\mu_{0}} + \int_{\mathbb{R}^{d}} x \left(\frac{1}{1 + |f(s)x|^{2}} - \frac{1}{1 + |x|^{2}} \right) \nu^{\mu_{0}}(dx) \right) \end{split}$$

$$= \lim_{t \to \infty} \int_0^t f(s)ds \int_{\mathbb{R}^d} x \left(\frac{1}{1 + |f(s)x|^2} - 1 \right) \nu^{\mu_0}(dx) \quad \text{(by the def. of } \gamma^{\mu_0})$$

$$= \lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\infty} t^{-1} e^{-t} dt \int_{\mathbb{R}^d} x \left(\frac{1}{1 + |tx|^2} - 1 \right) \nu^{\mu_0}(dx)$$

$$= -\lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\infty} t e^{-t} dt \int_{\mathbb{R}^d} \frac{x|x|^2}{1 + |tx|^2} \nu^{\mu_0}(dx) = \gamma^{\mu}.$$

Hence (26) holds.

Conversely, assume (26). Then there is $\mu_0 \in L_\infty \cap \mathfrak{D}(\Phi_f)$ such that $\Phi_f(\mu_0) = \mu$. By Proposition 4.1 of [S06], the Lévy measure of μ_0 necessarily equals ν^0 . Moreover

$$\gamma^{\mu} = \lim_{t \to \infty} \int_{0}^{t} f(s)ds \left(\gamma^{\mu_{0}} + \int_{\mathbb{R}^{d}} x \left(\frac{1}{1 + |f(s)x|^{2}} - \frac{1}{1 + |x|^{2}} \right) \nu^{\mu_{0}}(dx) \right)$$

$$= -\lim_{\varepsilon \downarrow 0} \int_{\varepsilon}^{\infty} t e^{-t} dt \int_{\mathbb{R}^{d}} \frac{x|x|^{2}}{1 + |tx|^{2}} \nu^{\mu_{0}}(dx)$$

by the same calculus as above, since $\gamma^{\mu_0} = -\int_{\mathbb{R}^d} \frac{x|x|^2 \nu^{\mu_0}(dx)}{1+|tx|^2}$ by virtue of Theorem B". This means (27).

Theorem D. Let $\mu \in I(\mathbb{R}^d)$. Then $\mu \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$ if and only if $\mu \in L_{\infty}(\mathbb{R}^d)$, $\Gamma^{\mu}((0,1]) = 0$, and

(28)
$$\int_{(1,2)} \frac{B(\frac{3-\beta}{2}, \frac{\beta+1}{2})}{\beta-1} \left(\frac{1}{\Gamma(\beta-1)} \int_{\varepsilon}^{\infty} t^{\beta-2} e^{-t} dt \right) \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda_{\beta}^{\mu}(d\xi)$$

is convergent in \mathbb{R}^d as $\varepsilon \downarrow 0$ and the limit equals $-\gamma^{\mu}$.

Proof. The "if" part. Let I_{ε} denote (28). For each $\varepsilon > 0$ finiteness of I_{ε} is seen from $(\beta - 1)\Gamma(\beta - 1) = \Gamma(\beta)$ and from

$$\sup_{\beta \in (1,2)} \int_{\varepsilon}^{\infty} t^{\beta-2} e^{-t} dt \leqslant \int_{\varepsilon}^{1} t^{-1} e^{-t} dt + \int_{1}^{\infty} e^{-t} dt < \infty.$$

Define μ_0 as in the proof of Lemma 2. Recall that $\int_{|x|>1} |x| \nu^{\mu_0}(dx) < \infty$. Then

$$\int_{\varepsilon}^{\infty} t e^{-t} dt \int_{\mathbb{R}^{d}} \frac{x|x|^{2}}{1 + |tx|^{2}} \nu^{0}(dx)$$

$$= \int_{\varepsilon}^{\infty} t e^{-t} dt \int_{(1,2)} \Gamma^{\mu_{0}}(d\beta) \int_{S} \xi \lambda_{\beta}^{\mu_{0}}(d\xi) \int_{0}^{\infty} \frac{r^{3}}{1 + t^{2}r^{2}} r^{-\beta - 1} dr$$

$$= \int_{\varepsilon}^{\infty} t^{\beta - 2} e^{-t} dt \int_{(1,2)} \frac{\Gamma^{\mu}(d\beta)}{\Gamma(\beta - 1)} \int_{S} \xi \lambda_{\beta}^{\mu}(d\xi) \int_{0}^{\infty} \frac{s^{2 - \beta}}{1 + s^{2}} ds = I_{\varepsilon},$$

using ([GR] p. 292)

$$\int_0^\infty \frac{s^{2-\beta}}{1+s^2} ds = \frac{B(\frac{3-\beta}{2}, \frac{\beta-1}{2})}{2} = \frac{\Gamma(\frac{3-\beta}{2})\Gamma(\frac{\beta-1}{2})}{2\Gamma(1)} = \frac{\Gamma(\frac{3-\beta}{2})\Gamma(\frac{\beta+1}{2})}{\beta-1} = \frac{B(\frac{3-\beta}{2}, \frac{\beta+1}{2})}{\beta-1}.$$

Therefore, Lemma 2 says that $\mu \in \Phi_f(L_\infty(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f))$. Moreover, $\Phi(\mu_0) = \mu$ as in the proof of Lemma 2. The distribution μ_0 satisfies the same condition as μ does. Indeed, $\mu_0 \in L_\infty(\mathbb{R}^d)$, $\Gamma^{\mu_0}((0,1]) = 0$,

$$\int_{(1,2)} \frac{B(\frac{3-\beta}{2}, \frac{\beta+1}{2})}{\beta-1} \left(\frac{1}{\Gamma(\beta-1)} \int_{\varepsilon}^{\infty} t^{\beta-2} e^{-t} dt \right) \Gamma^{\mu_0}(d\beta) \int_{S} \xi \lambda_{\beta}^{\mu_0}(d\xi)$$

is convergent in \mathbb{R}^d as $\varepsilon \downarrow 0$ by the dominated convergence theorem since

$$\int_{(1,2)} \frac{\Gamma^{\mu_0}(d\beta)}{\beta - 1} = \int_{(1,2)} \frac{\Gamma^{\mu}(d\beta)}{\Gamma(\beta)} < \infty,$$

and the limit equals

$$\begin{split} & \int_{(1,2)} \frac{B(\frac{3-\beta}{2},\frac{\beta+1}{2})}{\beta-1} \Gamma^{\mu_0}(d\beta) \int_S \xi \lambda_{\beta}^{\mu_0}(d\xi) \\ & = \int_{(1,2)} \Gamma^{\mu_0}(d\beta) \int_S \xi \lambda_{\beta}^{\mu_0}(d\xi) \int_0^\infty \frac{r^{2-\beta}dr}{1+r^2} = \int_{\mathbb{R}^d} \frac{x|x|^2 \nu^{\mu_0}(dx)}{1+|x|^2} = -\gamma^{\mu_0}. \end{split}$$

Therefore we can repeat the procedure above to prove $\mu \in \Phi_f^m(L_\infty(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f^m))$ for all integer $m \ge 1$.

The "only if" part. Assume that $\mu \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$. Then we can prove $\mu \in L_{\infty}(\mathbb{R}^d)$ and $\Gamma^{\mu}((0,1]) = 0$ in the same way as in the cases $0 < \alpha < 1$ and $1 < \alpha < 2$ (see the proofs of Theorems C and C' in [m1, m2]). The distribution $\mu_0 \in \mathfrak{D}(\Phi_f)$ satisfying $\Phi_f(\mu_0) = \mu$ is unique (see Proposition 4.1 of [S06]). For the ν^0 defined in Lemma 1, we have

$$\int_0^\infty ds \int_{\mathbb{R}^d} 1_B(f(s)x) \nu^0(dx) = \nu^\mu(B)$$

as in the proof of Lemma 2. Hence $\nu^{\mu_0} = \nu^0$ and $\mu_0 \in L_{\infty}$. It follows that $\mu \in \Phi_f(L_{\infty}(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f))$, that is, (26) holds. Since

$$I_{\varepsilon} = \int_{\varepsilon}^{\infty} t e^{-t} dt \int_{\mathbb{R}^d} \frac{x|x|^2}{1 + |tx|^2} \nu^0(dx)$$

as above, Lemma 2 says that I_{ε} is convergent on \mathbb{R}^d as $\varepsilon \downarrow 0$ and the limit is $-\gamma^{\mu}$.

Corollary. (i) If $\mu \in L_{\infty}(\mathbb{R}^d)$, $\Gamma^{\mu}((0,1]) = 0$, $\int_{(1,2)} (\beta - 1)^{-1} \Gamma^{\mu}(d\beta) < \infty$, and $\int_{\mathbb{R}^d} x \mu(dx) = 0$, then $\mu \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$.

(ii) If $\mu \in L_{\infty}(\mathbb{R}^d)$, $\Gamma^{\mu}((0,1]) = 0$, $\int_S \xi \lambda^{\mu}_{\beta}(d\xi) = 0$ for Γ^{μ} -a.e. $\beta \in (1,2)$, and $\gamma^{\mu} = 0$, then $\mu \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$.

(iii) If
$$\mu \in L_{\infty}(\mathbb{R}^d)$$
, $\Gamma^{\mu}((0,1]) = 0$,

(29)
$$\gamma^{\mu} = -\lim_{a \to \infty} \int_{|x| \le a} \frac{x|x|^2}{1 + |x|^2} \nu^{\mu}(dx),$$

and there is some $c \in (0,1]$ such that

(30)
$$\int_{S} \xi \lambda_{\beta}^{\mu}(d\xi) = 0 \quad \text{for } \Gamma^{\mu}\text{-a.e. } \beta \in (1, 1+c),$$

then $\mu \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$.

Proof. (i) Recall that the conditions $\Gamma^{\mu}((0,1]) = 0$ and $\int_{(1,2)} (\beta - 1)^{-1} \Gamma^{\mu}(d\beta) < \infty$ imply $\int_{\mathbb{R}^d} |x| \mu(dx) < \infty$ (see Lemma in [m2]). The same conditions imply that I_{ε} is convergent as $\varepsilon \downarrow 0$ and that the limit equals

$$\begin{split} & \int_{(1,2)} \frac{B(\frac{3-\beta}{2},\frac{\beta+1}{2})}{\beta-1} \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda^{\mu}_{\beta}(d\xi) = \int_{(1,2)} \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda^{\mu}_{\beta}(d\xi) \int_{0}^{\infty} \frac{r^{3}}{1+r^{2}} r^{-\beta-1} dr \\ & = \int_{\mathbb{R}^{d}} \frac{x|x|^{2}}{1+|x|^{2}} \nu^{\mu}(dx) = -\gamma^{\mu} \qquad \text{(since } \int_{\mathbb{R}^{d}} x \mu(dx) = 0 \text{)}. \end{split}$$

Hence it follows from Theorem D that $\mu \in \bigcap_{m=1}^{\infty} \mathfrak{R}_{f}^{m}$.

- (ii) Since the assumption implies $I_{\varepsilon} = 0$, we can use Theorem D.
- (iii) Define μ_1 and μ_2 by the following:

$$A^{\mu_1} = A^{\mu}, \quad \Gamma^{\mu_1}(d\beta) = \Gamma^{\mu}(d\beta \cap (1, 1 + c)), \quad \lambda^{\mu_1}_{\beta} = \lambda^{\mu}_{\beta}, \quad \gamma^{\mu_1} = 0,$$

$$A^{\mu_2} = 0, \quad \Gamma^{\mu_2}(d\beta) = \Gamma^{\mu}(d\beta \cap [1 + c, 2)), \quad \lambda^{\mu_2}_{\beta} = \lambda^{\mu}_{\beta}, \quad \gamma^{\mu_2} = \gamma^{\mu}.$$

Then $\mu = \mu_1 * \mu_2$ and, using (ii), we see that $\mu_1 \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$. Further, $\int_{|x|>1} |x| \nu^{\mu_2}(dx) < \infty$ and

$$\int_{|x| \leqslant a} \frac{x|x|^2}{1+|x|^2} \nu^{\mu}(dx) = \int_{(1,2)} \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda^{\mu}_{\beta}(d\xi) \int_{0}^{a} \frac{r^3}{1+r^2} r^{-\beta-1} dr
= \int_{(1+c,2)} \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda^{\mu}_{\beta}(d\xi) \int_{0}^{a} \frac{r^3}{1+r^2} r^{-\beta-1} dr
\rightarrow \int_{(1+c,2)} \Gamma^{\mu}(d\beta) \int_{S} \xi \lambda^{\mu}_{\beta}(d\xi) \int_{0}^{\infty} \frac{r^3}{1+r^2} r^{-\beta-1} dr = \int_{\mathbb{R}^d} \frac{x|x|^2}{1+|x|^2} \nu^{\mu_2}(dx)$$

as $a \to \infty$. Using the assumption, it follows that

$$-\gamma^{\mu_2} = -\gamma^{\mu} = \int_{\mathbb{R}^d} \frac{x|x|^2}{1+|x|^2} \nu^{\mu_2}(dx).$$

Hence $\int_{\mathbb{R}^d} x \mu_2(dx) = 0$. Hence, using (i), $\mu_2 \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$. For each integer $m \geqslant 1$, \mathfrak{R}_f^m is closed under convolution. Hence $\bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$ is closed under convolution. Hence it contains μ .

Theorem E. Let $\mu \in I(\mathbb{R}^d)$.

- (i) There exists $c \in \mathbb{R}^d$ such that $\mu * \delta_{-c} \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$ if and only if $\mu \in L_{\infty}(\mathbb{R}^d)$, $\Gamma^{\mu}((0,1]) = 0$, and $\int_{1 < |x| \le a} x \nu^{\mu}(dx)$ is convergent in \mathbb{R}^d as $a \to \infty$.
 - (ii) If there exists $c \in \mathbb{R}^d$ such that $\mu * \delta_{-c} \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$, then this c is unique.

Proof. (i) The "if" part. Choose ν^0 as in Lemma 1. Then $\int_{|x|>1} |x| \nu^0(dx) < \infty$. Lemma 1 tells us that $\int_1^a s^{-1} ds \int_{|x|>s} x \nu^0(dx)$ is convergent in \mathbb{R}^d as $a \to \infty$. Define μ_0 by the triplet

$$A^{\mu_0} = A^{\mu}, \quad \nu^{\mu_0} = \nu^0, \quad \gamma^{\mu_0} = -\int_{\mathbb{R}^d} \frac{x|x|^2}{1+|x|^2} \nu^{\mu_0}(dx).$$

It follows from Theorem B" that $\mu^0 \in \mathfrak{D}(\Phi_f) \cap L_{\infty}$. Let $\mu' = \Phi_f(\mu_0)$. Then $A^{\mu'} = A^{\mu}$ and $\nu^{\mu'} = \nu^{\mu}$ (see the proof of Lemma 2). Hence $\mu * \delta_{-c} = \mu' \in \mathfrak{R}_f^1$ for some $c \in \mathbb{R}^d$. It follows from Corollary (i) that $\mu_0 \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$. Hence $\mu' \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$.

The "only if" part. We assume that $\mu * \delta_{-c} \in \bigcap_{m=1}^{\infty} \mathfrak{R}_f^m$ for some $c \in \mathbb{R}^d$. Let $\mu' = \mu * \delta_{-c}$. It follows from Theorem D that $\mu' \in L_{\infty}$ and $\Gamma^{\mu'}((0,1]) = 0$. Let $\mu_0 \in \mathfrak{D}(\Phi_f)$ be such that $\Phi_f(\mu_0) = \mu'$. Then ν^{μ_0} equals ν^0 of Lemma 1. It follows from Theorem B" that $\int_1^a s^{-1} ds \int_{|x|>s} x \nu^0(dx)$ is convergent in \mathbb{R}^d as $a \to \infty$. Hence, by Lemma 1, $\int_{1<|x|\leqslant a} x \nu^{\mu}(dx)$ is convergent in \mathbb{R}^d as $a \to \infty$.

(ii) Suppose that both $\mu_1 = \mu * \delta_{-c_1}$ and $\mu_2 = \mu * \delta_{-c_2}$ belong to \mathfrak{R}_f^1 . Let μ_1^0 and μ_2^0 be such that $\Phi_f(\mu_1^0) = \mu_1$ and $\Phi_f(\mu_2^0) = \mu_2$. Since $A^{\mu_1} = A^{\mu_2}$ and $\nu^{\mu_1} = \nu^{\mu_2}$, we have $A^{\mu_1^0} = A^{\mu_2^0}$ and $\nu^{\mu_1^0} = \nu^{\mu_2^0}$ (see Proposition 4.1 of [S06]). Now it follows from Theorem B" that

$$\gamma^{\mu_1^0} = -\int_{\mathbb{R}^d} \frac{x|x|^2}{1+|x|^2} \nu^{\mu_1^0}(dx) = -\int_{\mathbb{R}^d} \frac{x|x|^2}{1+|x|^2} \nu^{\mu_2^0}(dx) = \gamma^{\mu_2^0}.$$

Therefore $\mu_1^0 = \mu_2^0$ and hence $\mu_1 = \mu_2$. It follows that $c_1 = c_2$.

REFERENCES

- [m1] Memo November 29, 2007, from KS.
- [m2] Memo December 5, 2007, from KS.
- [m3] Memo December 15, 2007, from KS.
- [GR] I.S. Gradshteyn and I.M. Ryzhik (1980). Table of Integrals, Series, and Products, Fourth edition, Academic Press, San Diego.
- [S06] K. Sato (2006). Two families of improper stochastic integrals with respect to Lévy processes, ALEA Lat. Am. J. Prob. Math. Stat. 1, 47–87.

Correction

Page 2, line 13, and page 3, line 9:

Replace
$$\gamma^{\mu_0} = -\int_{\mathbb{R}^d} \frac{x|x|^2 \nu^{\mu_0}(dx)}{1 + |tx|^2}$$
 by $\gamma^{\mu_0} = -\int_{\mathbb{R}^d} \frac{x|x|^2 \nu^{\mu_0}(dx)}{1 + |x|^2}$

Page 2, line 13, and page 3, line 9:
Replace
$$\gamma^{\mu_0} = -\int_{\mathbb{R}^d} \frac{x|x|^2 \nu^{\mu_0}(dx)}{1+|tx|^2}$$
 by $\gamma^{\mu_0} = -\int_{\mathbb{R}^d} \frac{x|x|^2 \nu^{\mu_0}(dx)}{1+|x|^2}$
Page 3, the last line:
Replace $\int_{\varepsilon}^{\infty} t^{\beta-2} e^{-t} dt \int_{(1,2)} \frac{\Gamma^{\mu}(d\beta)}{\Gamma(\beta-1)}$ by $\int_{(1,2)} \frac{\Gamma^{\mu}(d\beta)}{\Gamma(\beta-1)} \int_{\varepsilon}^{\infty} t^{\beta-2} e^{-t} dt$
Page 4, line 3: Replace $\Phi(\mu_0)$ by $\Phi_f(\mu_0)$