Memo November 29, 2007, from KS

A nested classes of the ranges of stochastic integrals with respect to Lévy processes on \mathbb{R}^d can have the limit which is a proper subclass of $L_{\infty}(\mathbb{R}^d)$. This is shown by an example.

Theorem A. If $\mu \in L_{\infty}(\mathbb{R}^d)$ with triplet (A, ν, γ) , then ν has representation

(1)
$$\nu(B) = \int_{(0,2)} \Gamma(d\beta) \int_{S} \lambda_{\beta}(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) r^{-\beta-1} dr \qquad B \in \mathcal{B}(\mathbb{R}^{d}),$$

where

(2)
$$\begin{cases} \Gamma \text{ is a measure on } (0,2) \text{ satisfying } \int_{(0,2)} (\beta^{-1} + (2-\beta)^{-1}) \Gamma(d\beta) < \infty \text{ and } \\ \lambda_{\beta} \text{ is a probability measure on } S \text{ for each } \beta \text{ and measurable in } \beta. \end{cases}$$

This Γ is uniquely determined by ν , and λ_{β} is determined by ν up to β of Γ -measure 0. Conversely, given A, γ , Γ , and λ_{β} satisfying (2), we can find $\mu \in L_{\infty}(\mathbb{R}^d)$ with triplet (A, ν, γ) , where ν satisfies (1).

This is Theorem 3.4 of [S80] or Theorem 22 of [RS03]. A similar fact was first discovered by Urbanik [U72, U73]. We call Γ the Γ -measure of $\mu \in L_{\infty}(\mathbb{R}^d)$, sometimes denoted by Γ^{μ} . If μ is Gaussian, then Γ^{μ} is zero measure.

Definition. Let $0 < \alpha < 2$. Let $L_{\infty}^{(\alpha)}(\mathbb{R}^d)$ denote the class of $\mu \in L_{\infty}(\mathbb{R}^d)$ with Γ^{μ} satisfying $\Gamma^{\mu}((0,\alpha]) = 0$.

The class $L_{\infty}^{(\alpha)}(\mathbb{R}^d)$ is closed under convolution, but is not closed under convergence.

Theorem B. Let $0 < \alpha < 1$, $p(u) = u^{-\alpha - 1}e^{-u}$, and $g(t) = \int_t^\infty p(u)du$ for $0 < t \le \infty$. Let t = f(s), $0 \le s < \infty$, be defined by s = g(t), $0 < t \le \infty$. Define

(3)
$$\Phi_f(\mu) = \mathcal{L}\left(\int_0^{\infty-} f(s)dX_s^{(\mu)}\right).$$

Then the domain and the range of Φ_f are as follows:

$$\mathfrak{D}(\Phi_f) = \{\mu = \mu_{(A,\nu,\gamma)} \colon \int_{|x|>1} |x|^{\alpha} \nu(dx) < \infty \}$$

$$= \{\mu = \mu_{(A,\nu,\gamma)} \colon \int_{\mathbb{R}^d} |x|^{\alpha} \mu(dx) < \infty \},$$

$$\mathfrak{R}(\Phi_f) = \{\mu = \mu_{(A,\nu,\gamma)} \colon \nu(B) = \int_S \lambda(d\xi) \int_0^\infty 1_B(u\xi) u^{-\alpha-1} h_{\xi}(u) du,$$

$$B \in \mathcal{B}(\mathbb{R}^d), \text{ where } \lambda \text{ is a measure on } S \text{ and } h_{\xi}(u) \text{ is a function } measurable \text{ in } \xi \text{ and, for } \lambda\text{-a. e. } \xi, \text{ not identically zero,}$$

$$completely \text{ monotone in } u \in (0,\infty), \text{ and } \lim_{u \to \infty} h_{\xi}(u) = 0.\}$$

Moreover,

$$\mathfrak{D}(\Phi_f) = \{ \mu \in I(\mathbb{R}^d) \colon \int_0^\infty |C_\mu(f(s)z)| ds < \infty \text{ for } z \in \mathbb{R}^d \}.$$

This result is in Theorems 2.4 and 4.2 of [S06]. Note that, if $\alpha \geqslant 1$, then descriptions of the domain and the range are different from Theorem B.

Theorem C. Let f(s) and Φ_f be as in Theorem B. Let

$$\mathfrak{R}_f^m = \mathfrak{R}_f^m(\mathbb{R}^d) = \Phi_f^m(\mathfrak{D}(\Phi_f^m)), \qquad m = 1, 2, \dots$$

Then

(4)
$$I(\mathbb{R}^d) \supset \mathfrak{R}_f^1 \supset \mathfrak{R}_f^2 \supset \cdots,$$

(5)
$$\bigcap_{m=1}^{\infty} \mathfrak{R}_f^m = L_{\infty}^{(\alpha)}(\mathbb{R}^d).$$

Proof. Step 1. Let us show (4). Let $m \ge 1$. We have

$$\mathfrak{D}(\Phi_f^{m+1}) = \{\mu \in \mathfrak{D}(\Phi_f^m) \colon \Phi_f^m(\mu) \in \mathfrak{D}(\Phi_f)\} = \{\mu \in \mathfrak{D}(\Phi_f) \colon \Phi_f(\mu) \in \mathfrak{D}(\Phi_f^m)\}.$$

Hence

$$\Phi_f(\mathfrak{D}(\Phi_f^{m+1})) \subset \mathfrak{D}(\Phi_f^m).$$

It follows that

$$\Phi_f^{m+1}(\mathfrak{D}(\Phi_f^{m+1})) \subset \Phi_f^m(\mathfrak{D}(\Phi_f^m)),$$

that is $\mathfrak{R}_f^{m+1} \subset \mathfrak{R}_f^m$.

Step 2. Let us show that

(6)
$$\mathfrak{R}_f^1 \subset \mathcal{U}(I(\mathbb{R}^d)) = U_0(\mathbb{R}^d).$$

Let $\mu \in \mathfrak{D}(\Phi_f)$ and $\widetilde{\mu} = \Phi_f(\mu)$. Let ν and $\widetilde{\nu}$ be the Lévy measures of μ and $\widetilde{\nu}$, respectively. Let $(\lambda(d\xi), \nu_{\xi}(dr))$ be a polar decomposition of ν . Then

$$\widetilde{\nu}(B) = \int_0^\infty ds \int_{\mathbb{R}^d} 1_B(f(s)x)\nu(dx) = \int_0^\infty p(t)dt \int_{\mathbb{R}^d} 1_B(tx)\nu(dx)$$

for $B \in \mathcal{B}(\mathbb{R}^d)$. If $B = \{r\xi : \xi \in D, r \in (s, \infty)\}$ with $D \in \mathcal{B}(S)$ and s > 0, then

$$\widetilde{\nu}(B) = \int_0^\infty p(t)dt \int_D \lambda(d\xi) \int_{s/t}^\infty \nu_{\xi}(dr) = \int_D \lambda(d\xi) \int_0^\infty \nu_{\xi}(dr) \int_{s/r}^\infty p(t)dt$$

$$= \int_D \lambda(d\xi) \int_0^\infty r^{-1} \nu_{\xi}(dr) \int_s^\infty p(u/r)du$$

$$= \int_D \lambda(d\xi) \int_s^\infty du \int_0^\infty p(u/r)r^{-1} \nu_{\xi}(dr).$$

Hence, letting $\widetilde{\lambda} = \lambda$ and

$$\widetilde{l}_{\xi}(u) = \int_0^\infty p(u/r)r^{-1}\nu_{\xi}(dr),$$

we obtain a polar decomposition $(\widetilde{\lambda}(d\xi), \widetilde{l}_{\xi}(u)du)$ of $\widetilde{\nu}$. Since p is decreasing, $\widetilde{l}_{\xi}(u)$ is decreasing in u. Therefore $\widetilde{\mu} \in U_0(\mathbb{R}^d)$.

Step 3. Let m be a positive integer. Let

$$v_m(t) = \frac{1}{(m-1)!} \int_t^1 \left(\log \frac{1}{t'}\right)^{m-1} dt', \quad 0 \le t \le 1.$$

Then $v_m(0) = 1$. Let $t = u_m(s)$, $0 \le s \le 1$, be defined by $s = v_m(t)$, $0 \le t \le 1$. Let

$$\Phi_{u_m}(\mu) = \mathcal{L}\left(\int_0^1 u_m(s)dX_s^{(\mu)}\right).$$

Then $\mathfrak{D}(\Phi_{u_m}) = I(\mathbb{R}^d)$ and

(7)
$$\Phi_{u_m}(\mu) = \mathcal{U}^m(\mu), \qquad \mu \in I(\mathbb{R}^d).$$

Indeed, $\mathfrak{D}(\Phi_{u_m}) = I(\mathbb{R}^d)$, because the function $\widetilde{u}_m(s)$ defined by $\widetilde{u}_m(s) = u_m(s)$ for $0 \le u \le 1$ and $\widetilde{u}_m(s) = 0$ for s > 1 is locally square integrable. Since $v_1(t) = 1 - t$ and $u_1(s) = 1 - s$, (7) is true for m = 1. Suppose that (7) is true for a given m. Then

$$C_{\mathcal{U}^{m+1}(\mu)}(z) = \int_0^1 C_{\mathcal{U}^m(\mu)}(sz)ds = \int_0^1 ds \int_0^1 C_{\mu}(su_m(r)z)dr$$

$$= \frac{1}{(m-1)!} \int_0^1 ds \int_0^1 C_{\mu}(stz) \left(\log \frac{1}{t}\right)^{m-1} dt$$

$$= \frac{1}{(m-1)!} \int_0^1 ds \int_0^s C_{\mu}(tz) \left(\log \frac{s}{t}\right)^{m-1} \frac{dt}{s}$$

$$= \frac{1}{(m-1)!} \int_0^1 C_{\mu}(tz)dt \int_t^1 \left(\log \frac{s}{t}\right)^{m-1} \frac{ds}{s}$$

$$= \frac{1}{m!} \int_0^1 C_{\mu}(tz) dt \left(\log \frac{1}{t} \right)^m dt,$$

which shows that $\Phi_{u_{m+1}}(\mu) = \mathcal{U}^{m+1}(\mu)$. Hence (7) is true for all m. This is essentially Jurek's result in [J04].

Step 4. Let m be a positive integer. Suppose that $\mu \in \mathfrak{D}(\Phi_f)$. Then $\mathcal{U}^m(\mu) \in \mathfrak{D}(\Phi_f)$ and $\Phi_f \mathcal{U}^m(\mu) = \mathcal{U}^m \Phi_f(\mu)$. Indeed, we have $\int_0^\infty |C_\mu(f(s)z)| ds < \infty$ by Theorem B. Hence

$$\int_{0}^{\infty} ds \int_{0}^{1} |C_{\mu}(u_{m}(t)f(s)z)| dt
= \int_{0}^{\infty} p(s')ds' \int_{0}^{1} |C_{\mu}(t's'z)| \frac{1}{(m-1)!} \left(\log \frac{1}{t'}\right)^{m-1} dt'
= \frac{1}{(m-1)!} \int_{0}^{1} \left(\log \frac{1}{t'}\right)^{m-1} dt' \int_{0}^{\infty} |C_{\mu}(s'z)| p\left(\frac{s'}{t'}\right) \frac{ds'}{t'}
= \frac{1}{(m-1)!} \int_{0}^{\infty} |C_{\mu}(s'z)| (s')^{-\alpha-1} ds' \int_{0}^{1} (t')^{\alpha} e^{-s'/t'} \left(\log \frac{1}{t'}\right)^{m-1} dt'
= \frac{1}{(m-1)!} \int_{0}^{\infty} |C_{\mu}(s'z)| (s')^{-\alpha-1} e^{-s'} ds' \int_{0}^{1} (t')^{\alpha} \left(\log \frac{1}{t'}\right)^{m-1} dt'
\leqslant \operatorname{const} \int_{0}^{\infty} |C_{\mu}(s'z)| (s')^{-\alpha-1} e^{-s'} ds' < \infty.$$

Thus $\mathcal{U}^m(\mu) \in \mathfrak{D}(\Phi_f)$ and

$$\int_0^\infty ds \int_0^1 C_\mu(u_m(t)f(s)z)dt = \int_0^1 dt \int_0^\infty C_\mu(u_m(t)f(s)z)ds,$$

which shows that $\Phi_f \mathcal{U}^m(\mu) = \mathcal{U}^m \Phi_f(\mu)$.

Step 5. Let m be a positive integer. Let $\mu \in I(\mathbb{R}^d)$ and $\widetilde{\mu} = \mathcal{U}^m(\mu)$. Then $\widetilde{\mu} \in \mathfrak{D}(\Phi_f)$ if and only if $\mu \in \mathfrak{D}(\Phi_f)$. The "if" part is already proved in Step 4, but the following proof shows it again. Let ν and $\widetilde{\nu}$ be the Lévy measures of μ and $\widetilde{\mu}$. Since

$$\widetilde{\nu}(B) = \int_0^1 ds \int_{\mathbb{R}^d} 1_B(u_m(s)x)\nu(dx) = \frac{1}{(m-1)!} \int_0^1 \left(\log \frac{1}{t}\right)^{m-1} dt \int_{\mathbb{R}^d} 1_B(tx)\nu(dx),$$

we have

$$\int_{|x|>1} |x|^{\alpha} \widetilde{\nu}(dx) = \frac{1}{(m-1)!} \int_{0}^{1} \left(\log \frac{1}{t}\right)^{m-1} dt \int_{|tx|>1} t^{\alpha} |x|^{\alpha} \nu(dx)$$
$$= \frac{1}{(m-1)!} \int_{|x|>1} |x|^{\alpha} \nu(dx) \int_{1/|x|}^{1} \left(\log \frac{1}{t}\right)^{m-1} dt.$$

Since

$$\frac{1}{(m-1)!} \int_{1/|x|}^{1} \left(\log \frac{1}{t}\right)^{m-1} dt \to 1 \text{ as } |x| \to \infty,$$

we see that $\int_{|x|>1} |x|^{\alpha} \widetilde{\nu}(dx) < \infty$ if and only if $\int_{|x|>1} |x|^{\alpha} \nu(dx) < \infty$. Now use the description of $\mathfrak{D}(\Phi_f)$ in Theorem B.

Step 6. We prove that

(8)
$$\mathfrak{R}_f^m \subset \mathcal{U}^m(I(\mathbb{R}^d)) = U_{m-1}(\mathbb{R}^d), \qquad m = 1, 2, \dots$$

For m=1 this is already shown in Step 2. Suppose that $\mathfrak{R}_f^m \subset \mathcal{U}^m(I(\mathbb{R}^d))$. Let $\mu \in \Phi_f^m(\mathfrak{D}(\Phi_f^{m+1}))$. Then $\mu \in \mathfrak{D}(\Phi_f)$ and $\mu = \mathcal{U}^m(\rho)$ for some $\rho \in I(\mathbb{R}^d)$, from which we have $\rho \in \mathfrak{D}(\Phi_f)$ using Step 5. Thus $\Phi_f(\mu) = \mathcal{U}^m\Phi_f(\rho)$ by Step 4. It follows that $\Phi_f^{m+1}(\mathfrak{D}(\Phi_f^{m+1})) \subset \mathcal{U}^m(\mathfrak{R}(\Phi_f))$, hence $\Phi_f^{m+1}(\mathfrak{D}(\Phi_f^{m+1})) \subset \mathcal{U}^{m+1}(I(\mathbb{R}^d))$.

Step 7. Let $\mu \in L_{\infty}(\mathbb{R}^d)$. Then $\mu \in \mathfrak{D}(\Phi_f)$ if and only if

(9)
$$\Gamma((0,\alpha]) = 0 \quad \text{and} \quad \int_{(\alpha,2)} (\beta - \alpha)^{-1} \Gamma(d\beta) < \infty,$$

where Γ is the Γ -measure of μ To show this, use Theorem B and, in the notation of Theorem A, note that

$$\int_{|x|>1} |x|^{\alpha} \nu(dx) = \int_{(0,2)} \Gamma(d\beta) \int_{S} \lambda_{\beta}(d\xi) \int_{1}^{\infty} r^{\alpha-\beta-1} dr = \infty \quad \text{if } \Gamma((0,\alpha]) > 0,$$

and that, if $\Gamma((0, \alpha]) = 0$, then

$$\int_{|x|>1} |x|^{\alpha} \nu(dx) = \int_{(\alpha,2)} \Gamma(d\beta) \int_{S} \lambda_{\beta}(d\xi) \int_{1}^{\infty} r^{\alpha-\beta-1} dr = \int_{(\alpha,2)} (\beta - \alpha)^{-1} \Gamma^{\mu}(d\beta).$$

Step 8. If $\mu \in L_{\infty}(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f)$, then $\Phi_f(\mu) \in L_{\infty}(\mathbb{R}^d)$ and the Lévy measure $\widetilde{\nu}$ of $\Phi_f(\mu)$ is as follows:

(10)
$$\widetilde{\nu}(B) = \int_{(\alpha,2)} \Gamma(\beta - \alpha) \Gamma(d\beta) \int_{S} \lambda_{\beta}(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) r^{-\beta - 1} dr, \qquad B \in \mathcal{B}(\mathbb{R}^{d}),$$

where $\Gamma(d\beta)$ and $\lambda_{\beta}(d\xi)$ are those of μ in Theorem A. Recall that $\Gamma(\beta-\alpha) \sim (\beta-\alpha)^{-1}$ as $\beta \downarrow \alpha$, since $(\beta - \alpha)\Gamma(\beta - \alpha) = \Gamma(\beta - \alpha + 1) \to \Gamma(1) = 1$ as $\beta \downarrow \alpha$. Indeed,

$$\widetilde{\nu}(B) = \int_0^\infty ds \int_{\mathbb{R}^d} 1_B(f(s)x)\nu(dx)$$

$$= \int_0^\infty p(u)du \int_{\mathbb{R}^d} 1_B(ux)\nu(dx)$$

$$= \int_0^\infty u^{-\alpha - 1}e^{-u}du \int_{(\alpha, 2)} \Gamma(d\beta) \int_S \lambda_\beta(d\xi) \int_0^\infty 1_B(ur\xi)r^{-\beta - 1}dr$$

$$= \int_{(\alpha, 2)} \Gamma(d\beta) \int_S \lambda_\beta(d\xi) \int_0^\infty u^{-\alpha - 1}e^{-u}du \int_0^\infty 1_B(r'\xi)u^\beta(r')^{-\beta - 1}dr'$$

$$= \int_{(\alpha,2)} \Gamma(\beta - \alpha) \Gamma(d\beta) \int_{S} \lambda_{\beta}(d\xi) \int_{0}^{\infty} 1_{B}(r'\xi)(r')^{-\beta - 1} dr'.$$

Step 9. Let us show that

(11)
$$\Phi_f(L_\infty(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f)) = L_\infty^{(\alpha)}(\mathbb{R}^d).$$

It follows from Step 8 that the left-hand side is included in the right-hand side. Let $\mu = \mu_{(A,\nu,\gamma)} \in L_{\infty}^{(\alpha)}(\mathbb{R}^d)$ with ν represented by $\Gamma(d\beta)$ and $\lambda_{\beta}(d\xi)$. Let $\mu_0 \in I(\mathbb{R}^d)$ with triplet (A_0, ν_0, γ_0) defined by

$$A_0 = (\Gamma(2-\alpha))^{-1}A,$$

$$\nu_0(B) = \int_{(\alpha,2)} (\Gamma(\beta-\alpha))^{-1} \Gamma(d\beta) \int_S \lambda_\beta(d\xi) \int_0^\infty 1_B(r\xi) r^{-\beta-1} dr,$$

$$\gamma_0 = (\Gamma(1-\alpha))^{-1} (\gamma - c_{\nu_0}),$$

where

$$c_{\nu_0} = \int_0^\infty f(s)ds \int_{\mathbb{R}^d} x \left(\frac{1}{1 + |f(s)x|^2} - \frac{1}{1 + |x|^2} \right) \nu_0(dx).$$

Definability of c_{ν_0} is checked in the following way:

$$\int_{\mathbb{R}^{d}} x \left(\frac{1}{1 + |f(s)x|^{2}} - \frac{1}{1 + |x|^{2}} \right) \nu_{0}(dx) = \int_{\mathbb{R}^{d}} \frac{x(|x|^{2} - |f(s)x|^{2})\nu_{0}(dx)}{(1 + |f(s)x|^{2})(1 + |x|^{2})},$$

$$\int_{0}^{\infty} f(s)ds \int_{\mathbb{R}^{d}} \frac{|x|^{3}\nu_{0}(dx)}{(1 + |f(s)x|^{2})(1 + |x|^{2})} \leqslant \frac{1}{2} \int_{\mathbb{R}^{d}} \frac{|x|^{2}\nu_{0}(dx)}{1 + |x|^{2}} < \infty,$$

$$\int_{0}^{\infty} f(s)ds \int_{\mathbb{R}^{d}} \frac{|x| |f(s)x|^{2}\nu_{0}(dx)}{(1 + |f(s)x|^{2})(1 + |x|^{2})} = \int_{0}^{\infty} f(s)^{2}ds \int_{\mathbb{R}^{d}} \frac{|x|^{2}|f(s)x|\nu_{0}(dx)}{(1 + |f(s)x|^{2})(1 + |x|^{2})}$$

$$\leqslant \frac{\Gamma(2 - \alpha)}{2} \int_{\mathbb{R}^{d}} \frac{|x|^{2}\nu_{0}(dx)}{1 + |x|^{2}} < \infty,$$

since $\int_0^\infty f(s)^2 ds = \int_0^\infty u^2 p(u) du = \int_0^\infty u^{-\alpha+1} e^{-u} du = \Gamma(2-\alpha)$. Thus $\mu_0 \in L_\infty(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f)$ by Step 7. Using Step 8 and Proposition 2.6 of [S06], we see that $\Phi_f(\mu_0) = \mu$, since

$$\int_{0}^{\infty} f(s)^{2} A_{0} ds = \Gamma(2 - \alpha) A_{0} = A,$$

$$\lim_{t \to \infty} \int_{0}^{t} f(s) ds \left(\gamma_{0} + \int_{\mathbb{R}^{d}} x \left(\frac{1}{1 + |f(s)x|^{2}} - \frac{1}{1 + |x|^{2}} \right) \nu_{0}(dx) \right)$$

$$= \Gamma(1 - \alpha) \gamma_{0} + c_{\nu_{0}} = \gamma,$$

noting that $\int_0^\infty f(s)ds = \int_0^\infty up(u)du = \int_0^\infty u^{-\alpha}e^{-u}du = \Gamma(1-\alpha)$. This proves that $L_\infty^{(\alpha)}(\mathbb{R}^d) \subset \Phi_f(L_\infty(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f))$.

Step 10. We claim that, for any positive integer m,

(12)
$$\Phi_f^m(L_\infty(\mathbb{R}^d) \cap \mathfrak{D}(\Phi_f^m)) = L_\infty^{(\alpha)}(\mathbb{R}^d).$$

It follows from Step 9 that

$$\Phi_f^m(L_\infty \cap \mathfrak{D}(\Phi_f^m)) \subset \Phi_f(L_\infty \cap \mathfrak{D}(\Phi_f)) = L_\infty^{(\alpha)}$$

Let us show

(13)
$$\Phi_f^m(L_\infty \cap \mathfrak{D}(\Phi_f^m)) \supset L_\infty^{(\alpha)}$$

by induction. This is true for m = 1 from Step 9. Suppose that (13) is true for a given m. Then, using Step 9,

$$\begin{split} L_{\infty}^{(\alpha)} &\subset \Phi_f^m(L_{\infty}^{(\alpha)} \cap \mathfrak{D}(\Phi_f^m)) = \Phi_f^m(\Phi_f(L_{\infty} \cap \mathfrak{D}(\Phi_f)) \cap \mathfrak{D}(\Phi_f^m)) \\ &= \Phi_f^m(\Phi_f(L_{\infty} \cap \mathfrak{D}(\Phi_f^{m+1}))) = \Phi_f^{m+1}(L_{\infty} \cap \mathfrak{D}(\Phi_f^{m+1})). \end{split}$$

Hence (13) is true for all m.

Final step. It follows from Step 10 that $\bigcap_{m=1}^{\infty} \mathfrak{R}_f^m \supset L_{\infty}^{(\alpha)}(\mathbb{R}^d)$. Let us show the converse inclusion. It follows from Step 6 that

$$\bigcap_{m=1}^{\infty} \mathfrak{R}_f^m \subset \bigcap_{m=1}^{\infty} U_{m-1}(\mathbb{R}^d) = U_{\infty}(\mathbb{R}^d) = L_{\infty}(\mathbb{R}^d).$$

Here we have used Jurek's result that $U_{\infty}(\mathbb{R}^d) = L_{\infty}(\mathbb{R}^d)$. Next, we claim that if $\mu \in L_{\infty}(\mathbb{R}^d) \cap \mathfrak{R}^1_f$, then $\Gamma^{\mu}((0,\alpha]) = 0$. Indeed, if $\mu \in \mathfrak{R}^1_f$, then the Lévy measure ν^{μ} has expression using $\lambda(d\xi)$ and $h_{\xi}(u)$ in Theorem B. On the other hand, if $\mu \in L_{\infty}(\mathbb{R}^d)$, then ν^{μ} has expression using $\Gamma(d\beta) = \Gamma^{\mu}(d\beta)$ and $\lambda_{\beta}(d\xi)$ in Theorem A, which is rewritten as

$$\nu^{\mu}(B) = \int_{S} \overline{\lambda}(d\xi) \int_{(0,2)} \Gamma_{\xi}(d\beta) \int_{0}^{\infty} 1_{B}(r\xi) r^{-\beta-1} dr$$
$$= \int_{S} \overline{\lambda}(d\xi) \int_{0}^{\infty} 1_{B}(r\xi) dr \int_{(0,2)} r^{-\beta-1} \Gamma_{\xi}(d\beta),$$

where $\overline{\lambda}(d\beta)$ is a probability measure on S and $\Gamma_{\xi}(d\beta)$ is, for each $\xi \in S$, a measure on (0,2) such that $\int_{(0,2)} (\beta^{-1} + (2-\beta)^{-1}) \Gamma_{\xi}(d\beta) = \text{const}$ and Γ_{ξ} is measurable in ξ . In fact, $\Gamma(d\beta)\lambda_{\beta}(d\xi) = \overline{\lambda}(d\xi)\Gamma_{\xi}(d\beta)$. Now use the uniqueness of the polar decomposition in Lemma 2.1 of [BMS06]. Thus, if $\mu \in L_{\infty}(\mathbb{R}^d) \cap \mathfrak{R}_f^1$, then there is a positive finite measurable function $c(\xi)$ such that $\lambda(d\xi) = c(\xi)\overline{\lambda}(d\xi)$ and that, for λ -a.e. ξ ,

$$h_{\xi}(r) = c(\xi)^{-1} r^{\alpha+1} \int_{(0,2)} r^{-\beta-1} \Gamma_{\xi}(d\beta) = c(\xi)^{-1} \int_{(0,2)} r^{\alpha-\beta} \Gamma_{\xi}(d\beta).$$

Since $h_{\xi}(r) \to 0$ as $r \to \infty$, we obtain $\Gamma_{\xi}((0,\alpha]) = 0$, which implies $\Gamma((0,\alpha]) = 0$. This completes the proof that $\bigcap_{m=1}^{\infty} \mathfrak{R}_f^m = L_{\infty}^{(\alpha)}(\mathbb{R}^d)$. Remarks. Let f(s) and Φ_f be as in Theorems B and C. We show some properties of Φ_f which we did not use in the proof of Theorem C.

- 1. Let $\beta \in (0, \alpha]$. Then any non-trivial β -stable distribution μ does not belong to $\mathfrak{D}(\Phi_f)$, because $\int_{\mathbb{R}^d} |x|^{\alpha} \mu(dx) = \infty$.
 - 2. If $\alpha < \beta < 2$, then $S_{\beta}(\mathbb{R}^d) \subset \mathfrak{D}(\Phi_f)$ and

$$\Phi_f(S_\beta(\mathbb{R}^d)) = S_\beta(\mathbb{R}^d),$$

where $S_{\beta}(\mathbb{R}^d)$ is the class of β -stable distributions on \mathbb{R}^d . Indeed, the first assertion comes from Theorem B and note that

$$\int_0^\infty f(s)ds = \int_0^\infty up(u)du = \int_0^\infty u^{-\alpha}e^{-u}du < \infty,$$

since $\alpha < 1$ and that

$$\int_0^\infty f(s)^\beta ds = \int_0^\infty u^\beta p(u) du = \int_0^\infty u^{\beta - \alpha - 1} e^{-u} du < \infty,$$

since $\alpha < \beta$. Thus the proof of Lemma 3.7 of [MS07] works.

3. Let m be a positive integer. Let $\mu \in L_{\infty}(\mathbb{R}^d)$ with Lévy measure represented by Γ and λ_{β} in Theorem A. Then $\mu \in \mathfrak{D}(\Phi_f^m)$ if and only if

$$\Gamma((0,\alpha]) = 0$$
 and $\int_{(\alpha,2)} (\beta - \alpha)^{-m} \Gamma(d\beta) < \infty$.

If $\mu \in \mathfrak{D}(\Phi_f^m)$, then $\Phi_f^m(\mu) \in L_{\infty}(\mathbb{R}^d)$ and the Lévy measure $\widetilde{\nu}$ of $\Phi_f^m(\mu)$ is as follows:

$$\widetilde{\nu}(B) = \int_{(\alpha,2)} (\Gamma(\beta - \alpha))^m \Gamma(d\beta) \int_S \lambda_\beta(d\xi) \int_0^\infty 1_B(r\xi) r^{-\beta - 1} dr, \qquad B \in \mathcal{B}(\mathbb{R}^d).$$

Further,

$$\Phi_f^m(L_\infty(\mathbb{R}^d)\cap\mathfrak{D}(\Phi_f^m))=L_\infty^{(\alpha)}(\mathbb{R}^d).$$

To prove this, repeat the arguments in Steps 7, 8, and 9.

4. Let m be a positive integer. A distribution $\mu \in I(\mathbb{R}^d)$ is in $\mathfrak{D}(\Phi_f^m)$ if and only if it has Lévy measure ν satisfying

(14)
$$\int_{|x|>1} |x|^{\alpha} (\log|x|)^{m-1} \nu(dx) < \infty.$$

To see this, first note that

(15)
$$\int_{1/v}^{\infty} u^{-1} e^{-u} (\log uv)^{m-1} du \sim m^{-1} (\log v)^m, \qquad v \to \infty.$$

Indeed, for m=1, this is seen using l'Hopital's rule; if (15) is true for m, then

$$\lim_{v \to \infty} \frac{\int_{1/v}^{\infty} u^{-1} e^{-u} (\log uv)^m du}{(m+1)^{-1} (\log v)^{m+1}} = \lim_{v \to \infty} \frac{m \int_{1/v}^{\infty} u^{-1} e^{-u} (\log uv)^{m-1} v^{-1} du}{(\log v)^m v^{-1}} = 1$$

using l'Hopital's rule again. Now, the assertion is true for m=1 as is in Theorem B. Suppose that the assertion is true for a given m. Then $\mathfrak{D}(\Phi_f^{m+1})$ is the class of $\mu \in \mathfrak{D}(\Phi_f)$ such that $\Phi_f(\mu)$ has Lévy measure $\widetilde{\nu}$ satisfying $\int_{|x|>1} |x|^{\alpha} (\log |x|)^{m-1} \widetilde{\nu}(dx) < \infty$. But

$$\int_{|x|>1} |x|^{\alpha} (\log|x|)^{m-1} \widetilde{\nu}(dx) = \int_{0}^{\infty} p(u) du \int_{|ux|>1} |ux|^{\alpha} (\log|ux|)^{m-1} \nu(dx)
= \int_{|x|>0} |x|^{\alpha} \nu(dx) \int_{1/|x|}^{\infty} u^{-1} e^{-u} (\log|ux|)^{m-1} du,
\int_{0<|x|\leqslant 1} |x|^{\alpha} \nu(dx) \int_{1/|x|}^{\infty} u^{-1} e^{-u} (\log|ux|)^{m-1} du
\leqslant \int_{0<|x|\leqslant 1} |x|^{\alpha} \nu(dx) \int_{1/|x|}^{\infty} u^{-1} e^{-u} (\log u)^{m-1} du < \infty,$$

since

$$\int_{v}^{\infty} u^{-1} e^{-u} (\log u)^{m-1} du \sim v^{-1} e^{-v} (\log v)^{m-1}, \qquad v \to \infty.$$

We have

$$\int_{|x|>1} |x|^{\alpha} \nu(dx) \int_{1/|x|}^{\infty} u^{-1} e^{-u} (\log|ux|)^{m-1} du < \infty$$

if and only if $\int_{|x|>1} |x|^{\alpha} (\log |x|)^m \nu(dx) < \infty$ by virtue of (15). Hence the assertion is true for m+1.

REFERENCES

- [BMS06] O.E. Barndorff-Nielsen, M. Maejima and K. Sato (2006). Some classes of multivariate infinitely divisible distributions admitting stochastic integral representations, *Bernoulli*, **12**, 1–33.
- [J04] Z. J. Jurek (2004) The random integral representation hypothesis revisited: new classes of s-selfdecomposable laws. In: Abstract and Applied Analysis, Proc. Intern. Conf., Hanoi, 2002, World Scientific, pp. 479–498.
- [MS07] M. Maejima and K. Sato (2007) The limits of nested classes of several classes of infinitely divisible distributions are identical with the closure of the class of stable distributions, preprint.
- [RS03] A. Rocha-Arteaga and K. Sato (2003) Topics in Infinitely Divisible Distributions and Lévy Processes, Aportaciones Matemáticas, Investigación 17, Sociedad Matemática Mexicana.
- [S80] K. Sato (1980) Class L of multivariate distributions and its subclasses, J. Multivar. Anal. 10, 207–232.
- [S06] K. Sato (2006b). Two families of improper stochastic integrals with respect to Lévy processes, ALEA Lat. Am. J. Prob. Math. Stat. 1, 47–87.
- [U72] K. Urbanik (1972). Slowly varying sequences of random variables, *Bull. Acad. Polonaise Sci. Sér. Math. Astronom. Phys.* **20**, 679–682.
- [U73] K. Urbanik (1973). Limit laws for sequences of normed sums satisfying some stability conditions. In: *Multivariate Analysis–III* (ed. P.R. Krishnaiah), Academic Press, 225–237.

CORRECTION. Page 1, the first line of the text: replace "classes" by "sequence".