Memo November 29, 2007, from KS

A nested classes of the ranges of stochastic integrals with respect to Lévy pro-
cesses on R? can have the limit which is a proper subclass of L. (R?). This is shown

by an example.

Theorem A. If u € Loo(RY) with triplet (A,v,~), then v has representation

1) uB)= /(02)r<dﬁ> /S As(de) /wlwor-ﬁ-ldr B e BRY,

0

where

@) [ is a measure on (0,2) satisfying f(o 2 (B~ +(2—03)"HI'(dB) < o and
Ag 5 a probability measure on S for each B and measurable in 3.

This I" is uniquely determined by v, and \g is determined by v up to 3 of I'-measure

0. Conversely, given A, v, T, and \g satisfying (2), we can find p € Loo(RY) with

triplet (A,v,v), where v satisfies (1).

This is Theorem 3.4 of [S80] or Theorem 22 of [RS03]. A similar fact was first
discovered by Urbanik [U72, U73]. We call T the I-measure of 1 € L., (R?), sometimes

denoted by I'*. If u is Gaussian, then I'* is zero measure.

Definition. Let 0 < o < 2. Let L (RY) denote the class of u € Lo (R?) with T*
satisfying I'*((0,a]) = 0.

The class L (R%) is closed under convolution, but is not closed under conver-

gence.

Theorem B. Let 0 < a < 1, p(u) = u=*e™, and g(t) = [ p(u)du for 0 < t < oo.
Let t = f(s), 0 < s < 00, be defined by s = g(t), 0 <t < 0o. Define

3) &) = (

0

o f<s>ng“>) |



Then the domain and the range of ®; are as follows:

D) = (= avey | lolv(de) < oc)

lz|>1

— = v [ Jal*nld) < o0}

R(D)) = {1 = piianey: Y(B) = /S A(d) / () he(u)du,

B € B(RY), where \ is a measure on S and he(u) is a function
measurable in & and, for A-a. e. £, not identically zero,
completely monotone in u € (0,00), and lim he(u) = 0.}

Moreover,

D(Pf) = {u € I(RY): /000 |CL(f(s)2)|ds < oo for z € RY}.

This result is in Theorems 2.4 and 4.2 of [S06]. Note that, if & > 1, then

descriptions of the domain and the range are different from Theorem B.
Theorem C. Let f(s) and ®; be as in Theorem B. Let
T =RPRY) =OPD(P})), m=12,....

Then

(4) IRY) DR} DR} D -,

(5) () ®F = LY RY).
m=1

Proof. Step 1. Let us show (4). Let m > 1. We have

D(CFH) = {p € D(PF): PF (1) € D(Py)} = {1 € D(Pf): D4(n) € D(PT)}.
Hence

CDf(BD((ID’J?“)) C D(PY).
It follows that
CTHH(D(RTT)) C OF(D(PT)),

that is R} C R}

Step 2. Let us show that
(6) R; CUI(RY)) = Up(RY).



Let p € ®(®s) and g = Py(p). Let v and v be the Lévy measures of p and v,
respectively. Let (A(d€),ve(dr)) be a polar decomposition of v. Then

/ ds /R p(f(s)e)ldr) = /0 o)t /R gt (dr)

for Be B(RY). If B={ré: €€ D, r € (s,00)} with D € B(S) and s > 0, then

w8) = [t [ ae) [ /Oo vetir) = [ 2ae) [ tan) [ st
= [ @) [ty [ty
/ dg/ du/ p(u/r)r"ve (dr).

Hence, letting A=\ and
L) = [ plufryr )
0

we obtain a polar decomposition (X(df),lg(u)du) of v. Since p is decreasing, l}(u) is
decreasing in u. Therefore 11 € Uy(R?).
Step 3. Let m be a positive integer. Let

1 ! IR
— /
Then v,,(0) = 1. Let t = um( ) O 1, be defined by s = v,,(t), 0 <t < 1. Let

s <
= ( s)dX W > :

Then D(®,,,) = I(R?) and

(7) @y, (1) =U™ (1), p e IRY).

Indeed, D(®P,,,) = I(R?), because the function ,,(s) defined by U, (s) = u,(s) for
0 <wu<1and u,(s) =0 for s > 1 is locally square integrable Since v1(t) =1 -t

and u1(s) = 1—s, (7) is true for m = 1. Suppose that (7) is true for a given m. Then

Cym1(wy(2) = / Crm(py(s2)ds —/ ds/ ' (SUp (1) 2)dr
1 m—1
1 ! 5 s\m—1 dt
= m=1) 1)!/0 ds/o C,(tz) <10g ;) "
1 ! 1 s\m—1 ds



_ 1C’tdlfllmdt
=1 ] Guteyar (10n ) a

which shows that @, ,, (1) = U™ (u). Hence (7) is true for all m. This is essentially
Jurek’s result in [JO4].

Step 4. Let m be a positive integer. Suppose that p € ©(®f). Then U™(u) €
D(®y) and @ U™ (1) = U™ P f(p). Indeed, we have [~ |Cu(f(s)z)|ds < oo by Theo-

rem B. Hence

/ ds/ 1O (o (£) () 2) |t
/ / |C,.(t's'2)] ] (1 gtll)mldt’
], () [ e (5)
= ﬁ /0 w|0u(s'z)|(3’)_a_1ds’ /0 1(t')ae—S’/t’ (log tl)ml dt’
= o [ e eras [ (k) ar

oo
< const/ 1CL('2)|(s) e ds’ < oc.
0

Thus U™ (1) € D(Py) and

/ ds / (tm(t)(5)2)dt = / it / F(5)2)ds,

which shows that ® U™ () = U D ().

Step 5. Let m be a positive integer. Let u € I(R?) and g = U™(u). Then
f€ D(Py) if and only if p € D(Pf). The “if” part is already proved in Step 4, but
the following proof shows it again. Let v and v be the Lévy measures of y and p.

/ ds /[R (s} () = ﬁ /0 1 (log %)ml dt /R nt)(d),

we have
1 ! ™!
x|*v(dx —/ (log —) dt/ t*x|*v(dx
/x|>1| [*tde) = (m—=1)!J, t |t|>1 l2l*(dz)

1 ! "™
= — x|*v(dx / (log —> dt.
(m —1)! A>1 #["(dz) 1/|| t

Since



Since

1 1 "
—'/ <log —) dt -1 as |z| — oo,
(m =1 Ji)a t
we see that f

2|51 |z|*v(dzx) < oo if and only if f| |z|*v(dz) < oo. Now use the
description of ®(®¢) in Theorem B.
Step 6. We prove that

(8) RY CU™I(RY) =Upa(RY),  m=12,....

z|>1

For m = 1 this is already shown in Step 2. Suppose that R} C U™(I(R?)). Let
pe OP(D(PFT). Then p € D(Pf) and p = U™(p) for some p € I(R?), from which
we have p € ©(®Py) using Step 5. Thus O (p) = U™Ps(p) by Step 4. It follows that
OTHH(D(PTH)) CU™(R(Py)), hence PP (D(PFT)) C U™ (I(RY)).

Step 7. Let p € Loo(R?). Then p € D(®y) if and only if
(9) D((0a) =0 and [ (5-a) T <

(,2)
where I' is the ['-measure of y To show this, use Theorem B and, in the notation of
Theorem A, note that

a o o0 a—f—1 B 1
/|:c|>1 || v(dz) —/(072)F<d5)/sm(d£>/1 r* 0 ldr = 0o if D((0,0]) > 0,
and that, if T'((0,«]) = 0, then

/x |>1|$|“V(d$> = /(QQ)F(dﬁ) /5 As(dg) /1 " pamiigy /M(ﬂ—oz)‘lrﬂ(dﬁ).

Step 8. If p € Loo(RY) ND(®y), then @ (1) € Loo(R?) and the Lévy measure v
of ®(p) is as follows:

(10) #(B)= /( T = ar(s) / As(de) / T1p0yrdr, B e BRY,

where I'(d3) and Ag(df) are those of 1 in Theorem A. Recall that T'(f—a) ~ (B—a)™!
as [ | «a, since ( 'B—a)=T—-a+1)—-I(1)=1as [ | a Indeed,

/Ooods/Rdlg i)

_ /0 " plu)du / 1 (uz)v(de)

/ u ! _“du/ /Aﬁ d€) Lp(uré)r=""ldr

0 (a,2) S 0

/ I'(d / Ag(d€) / u ey / 1p(r )P dr!
0 0



_ / L8 — a)I'(dp) / As(de) / Lp(E) ()P ar.
(,2) s 0

Step 9. Let us show that
(11) ©;(Loo(RY) ND(@))) = LY (RY).
It follows from Step 8 that the left-hand side is included in the right-hand side. Let
M= [(Avy) € L (RY) with v represented by I'(d3) and Ag(d€). Let g € I(R?) with
triplet (Ao, 1o, 7o) defined by

Ay =(T(2—-a)) A,

o

w(B) = /( RUCERIRCE / M(de) [ 1p(reyr o ar,

o= (I(1 = )" (7 = c),

= [ s [ (e~ o)

Definability of ¢,, is checked in the following way:

LU N (el = L))
Adx(1+|f<s>x|2 1+|a:|2) olda) / L+ ()eP) (L + o)

> |z Pro(dx) 1 |z |y (d) -
/ﬂs)ds/w T P 2P S 2 Ju 1+|x|2 <o

/ £(s / x| |f(s)2|*ro(dw) / £(s / || f (5)|vo(d)
ke (1+|f(s)z?)(1 + [2]?) ke (1+|f(s)z?)(1+ []?)
L'2-a) [ |z[w(dz)
= 2 R4 1+ ’33|2
since [° f(s)%ds = [T u’p(u)du = [[7u" e "du =T (2—a). Thus g € Leo(R?)N
D(Ps) by Step 7. Using Step 8 and Proposition 2.6 of [S06], we see that ®¢(p0) = p,

since

where

)

/OO f(5)*Agds =T(2 — a)Ag = A,
0

p 00 (0 [ o (i ~ ) )

= F(1 — )Y+ cw =7,
noting that [° f(s)ds = [ up(u)du = [;°u“e "du = I'(1 — «). This proves that
LY (RY ¢ <I>f(Loo(]Rd) ND(®))).
Step 10. We claim that, for any positive integer m,
(12) D7 (Loo(RY) N D(F)) = LE(RY).




It follows from Step 9 that

[o.9]

ST (Loo ND(PT)) C @4(Loo ND(Py)) = L.
Let us show
(13) PP (Lo ND(PF)) D LY

by induction. This is true for m = 1 from Step 9. Suppose that (13) is true for a
given m. Then, using Step 9,

L C o7 (LY ND(PT)) = OF(P(Los ND(Py)) N D(DT))
= O (Pf(Loo ND(PFT))) = BT (Loo ND(PFH)).

Hence (13) is true for all m.
Final step. Tt follows from Step 10 that ()_; R} D L (RY). Let us show the

converse inclusion. It follows from Step 6 that
(R C () Un-1(RY) = Use(R?) = Lo (RY).
m=1 m=1

Here we have used Jurek’s result that U, (R?) = L. (R?). Next, we claim that if
[t € Loo(R?) N R}, then T#((0,a]) = 0. Indeed, if 1 € R}, then the Lévy measure v
has expression using A(d¢) and h¢(u) in Theorem B. On the other hand, if 1 € Lo, (R?),
then v* has expression using I'(d) = I'*(dB) and Ag(d§) in Theorem A, which is

rewritten as

v(B) = [ e /() re(ds) | ey

= [Ne) [ 1utepi /(072) AT (dB),

where \(df3) is a probability measure on S and Le(dp) is, for each € € S, a measure
on (0,2) such that f(0,2) (B~ +(2—8)"1T¢(dB) = const and I is measurable in £. In
fact, I'(dB) Ag(d€) = A(dE)T¢(dF). Now use the uniqueness of the polar decomposition
in Lemma 2.1 of [BMS06]. Thus, if p € Loo(R?) N R}, then there is a positive finite
measurable function ¢(€) such that A(d€) = ¢(§)A(d€) and that, for A-a.e. &,
he(r) =) [T =) [ r(as)
(0.2) (0,2)

Since he(r) — 0 as r — oo, we obtain I'¢((0,a]) = 0, which implies I'((0, o]) = 0.
This completes the proof that (°°_, R™ = L (RY).



Remarks. Let f(s) and ®; be as in Theorems B and C. We show some properties
of ®; which we did not use in the proof of Theorem C.

1. Let § € (0,a]. Then any non-trivial S-stable distribution p does not belong
to D(®y), because [, ||*u(dr) = co.

2. If a < 8 < 2, then S3(R?) C D(P;) and

®(95(RT)) = Ss(RY),

where S5(R?Y) is the class of S-stable distributions on R?. Indeed, the first assertion

comes from Theorem B and note that

/O " (s)ds = /0 " up(u)du = /0 " ety < oo,

since v < 1 and that
/ f(s)Pds = / uPp(u)du = / uP e du < oo,
0 0 0

since o < . Thus the proof of Lemma 3.7 of [MS07] works.

3. Let m be a positive integer. Let yu € Lo (R?) with Lévy measure represented
by I and Ag in Theorem A. Then p € ®(®7}) if and only if

['((0,a]) =0 and / (B —a) "T(df) < oc.
(a,2)

If 11 € D(PY), then (1) € Loo(R?) and the Lévy measure 7 of ®F(u) is as follows:

7B = [ (- T@s) [ M) [ 1ar i B e BRY,

(e,2) S 0
Further,
O7 (Loo(RY) ND(PF)) = L (RY).

To prove this, repeat the arguments in Steps 7, 8, and 9.

4. Let m be a positive integer. A distribution € I(R?) is in D(®%') if and only

if it has Lévy measure v satisfying

(14) /|>1 (2|7 (log |} 1(dx) < oo.

To see this, first note that

(15) / u e " (loguv)™ tdu ~ m~*(logv)™, v — 00.
1/v
Indeed, for m = 1, this is seen using ’Hopital’s rule; if (15) is true for m, then
| jf/ov ute " (log uv)™du m flo/(; u~te *(loguv)™ tv~tdu
e (m+ 1)~ (logv)m+! e (logv)mov=t



using ’'Hopital’s rule again. Now, the assertion is true for m = 1 as is in Theorem B.
Suppose that the assertion is true for a given m. Then @((I)?H) is the class of i €
D(Py) such that ®(p) has Lévy measure v satisfying flw\>1 |z|*(log |z|)"'D(dz) <

0o. But

[ el tlog el 5tdr) = [ pluldu [ Jusl*(log el u(d)
||>1 0 Juz|>1
:/ |:L’|O‘y(da:)/ u e " (log lux|)™ 'du,
|z|>0 1

/1]

/ ]x\o‘l/(dx)/ u e (log lux|)™ tdu
0<|z|<1 1/l|
</ |:U|O‘1/(d:n)/ u e (logu)™ tdu < oo,
0<|z|<1 /|
since -
/ u e (logu)™ tdu ~ v e " (logv)™ 1, v — 00.
We have

/ \a:|a1/(d:v)/ u e " (log lux|)™ 'du < oo
|z|>1 1/|x|

if and only if fl$|>1 |z|*(log |x])™v(dz) < oo by virtue of (15). Hence the assertion is

true for m + 1.
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CORRECTION. Page 1, the first line of the text: replace “classes” by “sequence”.



